Journal of Solution Chemistry

, Volume 38, Issue 7, pp 827–841 | Cite as

Ion Pair Association in Extreme Aqueous Environments: Molecular-based and Electrical Conductance Approaches

  • Ariel A. Chialvo
  • Miroslaw S. Gruszkiewicz
  • J. Michael Simonson
  • Donald A. Palmer
  • David R. Cole


We determined by molecular-based simulation the density profiles of the Na+ ⋅⋅⋅Cl ion-pair association constant in steam environments along three supercritical isotherms to interrogate the behavior of ion speciation in dilute aqueous solutions at extreme conditions. Moreover, we describe a new ultra-sensitive, flow-through electrical-conductance apparatus designed to bridge the gap between the currently lowest steam-density conditions at which we are able experimentally to attain electrical conductance measurements and the theoretically reachable zero-density limit. Finally, we highlight important modeling challenges encountered near the zero-density limit and discuss ways to overcome them.


Ion-pair association Ultra-supercritical steam Molecular dynamics simulation Electrical conductance Flow-through cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moore, T.: Coal-based generation at the crossroads. EPRI J. (Summer), 6–15 (2005) Google Scholar
  2. 2.
    Liu, W.B., Wood, R.H., Doren, D.J.: Sodium chloride in supercritical water as a function of density: potentials of mean force and an equation for the dissociation constant from 723 to 1073 K and from 0 to 0.9 g/cm3. J. Phys. Chem. B 112, 7289–7297 (2008) CrossRefGoogle Scholar
  3. 3.
    Bellows, J.C., Harvey, A.H.: Steam solubilities for combustion turbine steam cooling. Int. J. Thermophys. 20, 197–205 (1999) CrossRefGoogle Scholar
  4. 4.
    Jonas, O.: Water chemistry and corrosion in steam cycles—missing knowledge. Mater. Perform. 42, 32–36 (2003) Google Scholar
  5. 5.
    Anderko, A., Pitzer, K.S.: Equation-of-state representation of phase-equilibria and volumetric properties of the system NaCl-H2O above 573 K. Geochim. Cosmochim. Acta 57, 1657–1680 (1993) CrossRefGoogle Scholar
  6. 6.
    Liu, B., Oscarson, J.L., Peterson, C.J., Izatt, R.M.: Improved thermodynamic model for aqueous NaCl solutions from 350 to 400 degrees C. Ind. Eng. Chem. Res. 45, 2929–2939 (2006) CrossRefGoogle Scholar
  7. 7.
    Oscarson, J.L., Palmer, B.A., Fuangswasdi, S., Izatt, R.M.: A new model incorporating ion dissociation for sodium chloride solutions near the critical point of water. Ind. Eng. Chem. Res. 40, 2176–2182 (2001) CrossRefGoogle Scholar
  8. 8.
    Pitzer, K.S.: Thermodynamics of sodium chloride solutions in steam. J. Phys. Chem. 87, 1120–1125 (1983) CrossRefGoogle Scholar
  9. 9.
    Sue, K., Adschiri, T., Arai, K.: Predictive model for equilibrium constants of aqueous inorganic species at subcritical and supercritical conditions. Ind. Eng. Chem. Res. 41, 3298–3306 (2002) CrossRefGoogle Scholar
  10. 10.
    Chialvo, A.A., Ho, P.C., Palmer, D.A., Gruszkiewicz, M.S., Cummings, P.T., Simonson, J.M.: H3O+/Cl association in high-temperature aqueous solutions over a wide range of state conditions. A direct comparison between simulation and electrical conductance experiment. J. Phys. Chem. B 106, 2041–2046 (2002) CrossRefGoogle Scholar
  11. 11.
    Chialvo, A.A., Chialvo, S., Simonson, J.M., Kalyuzhnyi, Y.V.: Solvation phenomena in dilute multicomponent solutions. I. Formal results and molecular outlook. J. Chem. Phys. 128, 214512 (2008) CrossRefGoogle Scholar
  12. 12.
    Zimmerman, G.H., Gruszkiewicz, M.S., Wood, R.H.: New apparatus for conductance measurements at high temperature: Conductance of aqueous solutions of LiCl, NaCl, NaBr, and CsBr at 28 MPa and water densities from 700 to 260 kg/m3. J. Phys. Chem. 99, 11612–11625 (1995) CrossRefGoogle Scholar
  13. 13.
    Gruszkiewicz, M.S., Wood, R.H.: Conductance of LiCl, NaCl, NaBr, and CsBr solutions in supercritical water using a flow conductance cell. J. Phys. Chem. B 101, 6549–6559 (1997) CrossRefGoogle Scholar
  14. 14.
    Quist, A.S., Marshall, W.L.: Electrical conductances of aqueous sodium chloride solutions from 0 to 800 degrees and at pressures to 4000 bars. J. Phys. Chem. 72, 684–703 (1968) CrossRefGoogle Scholar
  15. 15.
    Mesmer, R.E., Marshall, W.L., Palmer, D.A., Simonson, J.M., Holmes, H.F.: Thermodynamics of aqueous association and ionization reactions at high temperatures and pressures. J. Solution Chem. 17, 699–718 (1988) CrossRefGoogle Scholar
  16. 16.
    Franck, E.U.: Hochverdichteter Wasserdampf—III Ionendissoziation von HCl, KOH und H2O in überkritischem Wasser. Z. Phys. Chem. N.F. 8, 192–206 (1956) Google Scholar
  17. 17.
    Zimmerman, G.H., Thesis, Ph.D.: University of Delaware (1993) Google Scholar
  18. 18.
    Ho, P.C., Palmer, D.A., Mesmer, R.E.: Electrical conductivity measurements of aqueous sodium chloride solutions to 600 deg C and 300 MPa. J. Solution Chem. 23, 997–1018 (1994) CrossRefGoogle Scholar
  19. 19.
    Ho, P.C., Palmer, D.A.: Ion association of dilute aqueous sodium hydroxide solutions to 600 degrees C and 300 MPa by conductance measurements. J. Solution Chem. 25, 711–729 (1996) CrossRefGoogle Scholar
  20. 20.
    Ho, P.C., Palmer, D.A.: Determination of ion association in dilute aqueous lithium chloride and lithium hydroxide solutions to 600 °C and 300 MPa by electrical conductance measurements. J. Chem. Eng. Data 43, 102–110 (1998) CrossRefGoogle Scholar
  21. 21.
    Ho, P.C., Bianchi, H., Palmer, D.A., Wood, R.H.: Conductivity of dilute aqueous electrolyte solutions at high temperatures and pressures using a flow cell. J. Solution Chem. 29, 217–235 (2000) CrossRefGoogle Scholar
  22. 22.
    Ho, P.C., Palmer, D.A., Gruszkiewicz, M.S.: Conductivity measurements of dilute aqueous HCl solutions to high temperatures and pressures using a flow-through cell. J. Phys. Chem. B 105, 1260–1266 (2001) CrossRefGoogle Scholar
  23. 23.
    Mesmer, R.E., Palmer, D.A., Simonson, J.M.: Ion association as high temperatures and pressures. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, pp. 491–529. CRC Press, Boca Raton (1991) Google Scholar
  24. 24.
    Fernandez-Prini, R.: Conductance of electrolyte solutions. Trans. Faraday Soc. 65, 3311–3313 (1969) CrossRefGoogle Scholar
  25. 25.
    Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Springer, Darmstadt (1998) Google Scholar
  26. 26.
    Ibuki, K., Ueno, M., Nakahara, M.: Analysis of concentration dependence of electrical conductances for 1:1 electrolytes in sub- and supercritical water. J. Phys. Chem. B 104, 5139–5150 (2000) CrossRefGoogle Scholar
  27. 27.
    Chialvo, A.A., Cummings, P.T., Cochran, H.D., Simonson, J.M., Mesmer, R.E.: Na+_Cl ion association in supercritical water. J. Chem. Phys. 103, 9379–9387 (1995) CrossRefGoogle Scholar
  28. 28.
    Chialvo, A.A., Cummings, P.T., Simonson, J.M., Mesmer, R.E.: Temperature and density effects on the high temperature ionic speciation in dilute Na+/Cl aqueous solutions. J. Chem. Phys. 105, 9248–9257 (1996) CrossRefGoogle Scholar
  29. 29.
    Chialvo, A.A., Cummings, P.T., Simonson, J.M.: H3O+/Cl ion pair formation in high-temperature aqueous solutions. J. Chem. Phys. 113, 8093–8100 (2000) CrossRefGoogle Scholar
  30. 30.
    Chase Jr., M.W., Davies, C.A., Downey Jr., J.R., Frurip, D.J., McDonald, R.A., Syverud, A.N.: JANAF thermodynamical tables. J. Phys. Chem. Ref. Data 14 (1985) (Supplement No 1) Google Scholar
  31. 31.
    Chialvo, A.A., Simonson, J.M.: Aqueous Na+Cl pair association from liquid-like to steam-like densities along near-critical isotherms. J. Chem. Phys. 118, 7921–7929 (2003) CrossRefGoogle Scholar
  32. 32.
    Patra, M., Karttunen, M.: Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: Diffusion, free energy of hydration, and structural properties. J. Comp. Chem. 25, 678–689 (2004) CrossRefGoogle Scholar
  33. 33.
    Chialvo, A.A., Simonson, J.M.: H3O+Cl pair association in steam and highly compressible aqueous environments. J. Phys. Chem. C 111, 15569–15574 (2007) CrossRefGoogle Scholar
  34. 34.
    Fuoss, R.M.: Paired ions: Dipolar pairs as subset of diffusion pairs. Proc. Nat. Acad. Sci. USA 75, 16–20 (1978) CrossRefGoogle Scholar
  35. 35.
    Bjerrum, N.: Ionic association. I. Influence of ionic association on the activity of ions at moderate degrees of association. Kgl. Dan. Videnskab. Selskab. Math.-Fys. Medd. 7, 1–48 (1926) Google Scholar
  36. 36.
    Walther, J.V., Schott, J.: The dielectric constant approach to speciation and ion pairing at high temperature and pressure. Nature 332, 635–638 (1988) CrossRefGoogle Scholar
  37. 37.
    Wood, R.H., Carter, R.W., Quint, J.R., Majer, V., Thompson, P., Boccio, J.R.: Aqueous electrolytes at high temperatures: comparison of experiment with simulation and continuum models. J. Chem. Thermodyn. 26, 225–249 (1994) CrossRefGoogle Scholar
  38. 38.
    Barthel, J., Wachter, R., Gores, H.-J.: In: Conway, B.E., Bockris, J.O’M. (eds.) Modern Aspects of Electrochemistry, vol. 13, pp. 1–79. Plenum Press, New York (1979) Google Scholar
  39. 39.
    Marshall, W.L.: Aqueous electrolyte ionization over extreme ranges as simple fundamental relation with density and believed universal; sodium chloride ionization from 0 ° to 1000 °C and to 1000 MPa (10000 Atm.). Available from Nature Proceedings (2008)

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ariel A. Chialvo
    • 1
  • Miroslaw S. Gruszkiewicz
    • 1
  • J. Michael Simonson
    • 2
  • Donald A. Palmer
    • 3
  • David R. Cole
    • 1
  1. 1.Chemical Sciences Division, Aqueous Chemistry and Geochemistry GroupOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Center for Nanophase Materials Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Oliver SpringsUSA

Personalised recommendations