Journal of Solution Chemistry

, Volume 38, Issue 6, pp 695–712 | Cite as

Investigation of the Interactions in Complexes of Low Molecular Weight Chitosan with Ibuprofen

  • Amjad M. Qandil
  • Aiman A. Obaidat
  • Muaadh A. Mohammed Ali
  • Bashar M. Al-Taani
  • Bassam M. Tashtoush
  • Nawzat D. Al-Jbour
  • Mayyas M. Al Remawi
  • Khaldoun A. Al-Sou’od
  • Adnan A. Badwan


Complexation between ibuprofen and low molecular weight chitosan (LMWC) was studied. LMWC was prepared from high molecular weight chitosan using the acid hydrolysis method. The complexes were investigated by using DSC, FT-IR and liquid-state 1H-NMR. Molecular mechanics (MM) calculations were used to give insight into the stoichiometry of the interaction of chitosan with ibuprofen. The results showed that complexation of ibuprofen with LMWC involves ionic interaction between the ammonium group of LMWC and the carboxylate anion of ibuprofen. It was also shown that it is more efficient to prepare the complexes using lower concentration solutions of the polymer. These results were supported by molecular mechanics calculations. The experimental results may explain the discrepancies in the literature where, in many studies, the concentration of chitosan and its low average molecular weight were not considered to be important factors in the complexation process.


Low molecular weight chitosan (LMWC) Ibuprofen NMR FT-IR DSC Molecular mechanics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., Domb, A.J.: Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104, 6017–6084 (2004). doi: 10.1021/cr030441b CrossRefGoogle Scholar
  2. 2.
    Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006). doi: 10.1016/j.progpolymsci.2006.06.001 CrossRefGoogle Scholar
  3. 3.
    Maoa, S., Shuai, X., Unger, F., Simona, M., Bi, D., Kissel, T.: The depolymerization of chitosan: effects on physicochemical and biological properties. Int. J. Pharm. 281, 45–54 (2004). doi: 10.1016/j.ijpharm.2004.05.019 CrossRefGoogle Scholar
  4. 4.
    Majeti, N.V., Kumar, R.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 1–27 (2000). doi: 10.1016/S1381-5148(00)00038-9 CrossRefGoogle Scholar
  5. 5.
    Shahidi, F., Kamil, J., Arachchi, V., Jeon, Y.-J.: Food applications of chitin and chitosans. Trends Food Sci. Technol. 10, 37–51 (1999). doi: 10.1016/S0924-2244(99)00017-5 CrossRefGoogle Scholar
  6. 6.
    Li, J., Du, Y., Yang, J., Feng, T., Li, A., Chen, P.: Preparation and characterisation of low molecular weight chitosan and chito-oligomers by a commercial enzyme. Polym. Degrad. Stabil. 87, 441–448 (2005). doi: 10.1016/j.polymdegradstab.2004.09.008 CrossRefGoogle Scholar
  7. 7.
    Prabaharan, M., Mano, J.F.: Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 12, 41–57 (2004). doi: 10.1080/10717540590889781 CrossRefGoogle Scholar
  8. 8.
    Thanou, M., Verhoef, J.C., Junginger, H.E.: Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev. 52, 117–126 (2001). doi: 10.1016/S0169-409X(01)00231-9 CrossRefGoogle Scholar
  9. 9.
    Senel, S., Kremer, M.J., Kas, S., Wertz, P.W., Hincal, A.A., Squier, C.A.: Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 21, 2067–2071 (2000). doi: 10.1016/S0142-9612(00)00134-4 CrossRefGoogle Scholar
  10. 10.
    Jeon, Y.-J., Shahidi, F., Kim, S.-K.: Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev. Int. 16, 159–176 (2000). doi: 10.1081/FRI-100100286 CrossRefGoogle Scholar
  11. 11.
    Imai, T., Shiraishi, S., Saito, H., Otagiri, M.: Interaction of indomethacin with low molecular weight chitosan and improvements of some pharmaceutical properties of indomethacin by low molecular weight chitosans. Int. J. Pharm. 67, 11–20 (1991). doi: 10.1016/0378-5173(91)90260-U CrossRefGoogle Scholar
  12. 12.
    Mura, P., Zerrouk, N., Mennini, N., Maestrelli, F., Chemtob, C.: Development and characterization of naproxen-chitosan solid systems with improved drug dissolution properties. Eur. J. Pharm. Sci. 19, 67–75 (2003). doi: 10.1016/S0928-0987(03)00068-X CrossRefGoogle Scholar
  13. 13.
    Berthold, A., Cremer, K., Kreuter, J.: Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J. Control. Release 39, 17–25 (1996). doi: 10.1016/0168-3659(95)00129-8 CrossRefGoogle Scholar
  14. 14.
    Boonsongrit, Y., Mitrevej, A., Mueller, B.W.: Chitosan drug binding by ionic interaction. Eur. J. Pharm. Biopharm. 62, 267–274 (2006). doi: 10.1016/j.ejpb.2005.09.002 CrossRefGoogle Scholar
  15. 15.
    Boonsongrit, Y., Mueller, B.W., Mitrevej, A.: Characterization of drug–chitosan interaction by 1H-NMR FTIR and isothermal titration calorimetry. Eur. J. Pharm. Biopharm. 69, 388–395 (2008). doi: 10.1016/j.ejpb.2007.11.008 CrossRefGoogle Scholar
  16. 16.
    Kweon, D.-K., Song, S.-B., Park, Y.-Y.: Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials 24, 1595–1601 (2003). doi: 10.1016/S0142-9612(02)00566-5 CrossRefGoogle Scholar
  17. 17.
    Puttipipatkhachorn, S., Nunthanid, J.J., Yamamoto, K., Peck, G.E.: Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. J. Control. Release 75, 143–153 (2001). doi: 10.1016/S0168-3659(01)00389-3 CrossRefGoogle Scholar
  18. 18.
    BPC: British Pharmacopoeia 2004. Stationery Office Books, Norwich (2004) Google Scholar
  19. 19.
    Paulino, A.T., Simionato, J.I., Garcia, J.C., Nozaki, J.: Characterization of chitosan and chitin produced from silkworm chrysalids. Carbohydr. Polym. 64, 98–103 (2006). doi: 10.1016/j.carbpol.2005.10.032 CrossRefGoogle Scholar
  20. 20.
    Guinesi, L.S., Cavalheiro, E.T.G.: The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim. Acta 444, 128–133 (2006). doi: 10.1016/j.tca.2006.03.003 CrossRefGoogle Scholar
  21. 21.
    Xu, F., Sun, L.-X., Tan, Z.-C., Liang, J.-G., Li, R.-L.: Thermodynamic study of ibuprofen by adiabatic calorimetry and thermal analysis. Thermochim. Acta 412, 33–37 (2004). doi: 10.1016/j.tca.2003.08.021 CrossRefGoogle Scholar
  22. 22.
    Lee, D.H., Sr, R.A.C., Reed, J.S.: Infrared spectral investigation of polyacrylate adsorption on alumina. J. Mater. Sci. 31, 471–478 (1996). doi: 10.1007/BF01139166 CrossRefGoogle Scholar
  23. 23.
    Silverstein, R.M., Webster, F.X., Kiemle, D.J.: Spectroscopic Identification of Organic Compounds, 7th edn., p. 502. Wiley, New Jersey (2005) Google Scholar
  24. 24.
    Kittur, F.S., Vishu Kumar, A.B., Tharanathan, R.N.: A validated 1H-NMR method for the determination of the degree of deacetylation of chitosan. J. Pharm. Biomed. Anal. 32, 1149–1158 (2003). doi: 10.1016/S0731-7085(03)00155-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amjad M. Qandil
    • 1
  • Aiman A. Obaidat
    • 2
  • Muaadh A. Mohammed Ali
    • 2
  • Bashar M. Al-Taani
    • 2
  • Bassam M. Tashtoush
    • 2
  • Nawzat D. Al-Jbour
    • 3
  • Mayyas M. Al Remawi
    • 3
  • Khaldoun A. Al-Sou’od
    • 3
    • 4
  • Adnan A. Badwan
    • 3
  1. 1.Department of Medicinal Chemistry and Pharmacognosy, Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Pharmaceutical Technology, Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan
  3. 3.Jordanian Pharmaceutical Manufacturing CompanyNaorJordan
  4. 4.Department of Chemistry, Faculty of ScienceAl al-Bayt UniversityMafraqJordan

Personalised recommendations