Skip to main content
Log in

Isothermal Titration Calorimetry and Theoretical Studies on Host-guest Interaction of Ibuprofen with α-, β- and γ-Cyclodextrin

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic parameters for formation of the inclusion complexes of α-, β- and γ-cyclodextrin (α-, β- and γ-CD) with ibuprofen (BF) in Tris-HCl buffer solutions (pH=7.0) have been determined by isothermal titration calorimetry (ITC) with nanowatt sensitivity, and the inclusion structures have been investigated by using 1H-NMR spectra at 298.15 K. A theoretical study on the inclusion processes between BF and CDs has been performed with the B3LYP/6-31G*//PM3 method in order to investigate the formation mechanism of the inclusion complexes. An analysis of the thermodynamic data indicates that the stoichiometries of α-, β- and γ-CD with BF are all 1:1 and formation of the inclusion complexes α-CD⋅BF and β-CD⋅BF are driven by enthalpy and entropy, whereas formation of γ-CD⋅BF is an entropy driven process. The 1H-NMR spectra provide clear evidence for the inclusion phenomenon, and show that the isobutyl group and aromatic ring of the guest molecule are trapped inside the cavity of the CDs. Theoretical calculations suggest that the complex formed by the BF molecule entering into the cavity of the CD molecule from the wide side is more stable than that from the narrow side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Villalonga, R., Cao, R., Fragoso, A.: Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088–3116 (2007). doi:10.1021/cr050253g

    Article  CAS  Google Scholar 

  2. Gellman, S.H.: Introduction: molecular recognition. Chem. Rev. 97, 1231–1734 (1997). doi:10.1021/cr970328j

    Article  CAS  Google Scholar 

  3. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998). doi:10.1021/cr970022c

    Article  CAS  Google Scholar 

  4. Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrin. Chem. Rev. 98, 1875–1918 (1998). doi:10.1021/cr970015o

    Article  CAS  Google Scholar 

  5. Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrin. Chem. Rev. 98, 1829–1873 (1998). doi:10.1021/cr9700179

    Article  CAS  Google Scholar 

  6. Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. J. Pharm. Sci. 85, 1017–1025 (1996). doi:10.1021/js950534b

    Article  CAS  Google Scholar 

  7. Hoskin, F.C.G., Steeves, D.M., Walker, J.E.: Substituted cyclodextrin as a model for a squid enzyme that hydrolyzes the nerve gas Soman. Biol. Bull. 197, 284–285 (1999). doi:10.2307/1542654

    Article  CAS  Google Scholar 

  8. Fukahori, T., Kondo, M., Nishikawa, S.: Dynamic study of interaction between β-cyclodextrin and aspirin by the ultrasonic relaxation method. J. Phys. Chem. B 110, 4487–4491 (2006). doi:10.1021/jp058205n

    Article  CAS  Google Scholar 

  9. Wintgens, V., Daoud-Mahammed, S., Gref, R., Bouteiller, L., Amiel, C.: Aqueous polysaccharide associations mediated by β-cyclodextrin polymers. Biomacromolecules 9, 1434–1442 (2008). doi:10.1021/bm800019g

    Article  CAS  Google Scholar 

  10. Horvath, G., Premkumar, T., Boztas, A., Jon, S., Geckeler, K.E.: Supramolecular nanoencapsulation as a tool: Solubilization of the anticancer drug trans-dichloro(dipyridine)platinum(II) by complexation with beta-cyclodextrin. Mol. Pharm. 5, 358–363 (2008). doi:10.1021/mp700144t

    Article  CAS  Google Scholar 

  11. Villalonga, R., Cao, R., Fragoso, A.: Supramolecular chemistry of cyclodextrins in enzyme technology. Chem. Rev. 107, 3088–3116 (2007). doi:10.1021/cr050253g

    Article  CAS  Google Scholar 

  12. González-Pérez, A., Dias, R.S., Nylander, T., Lindman, B.: Cyclodextrin-surfactant complex: A new DNA decompaction. Biomacromolecules 9, 772–775 (2008). doi:10.1021/bm7012907

    Article  Google Scholar 

  13. Duan, M.S., Zhao, N., Loftsson, T.: Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: formation of aggregates and higher-order complexes. Int. J. Pharm. 297, 213–222 (2005)

    CAS  Google Scholar 

  14. Saville, D.J.: Influence of strorage on in-vitro release of ibuprofen from sugar coated tablets. Int. J. Pharm. 224, 39–49 (2001). doi:10.1016/S0378-5173(01)00734-7

    Article  CAS  Google Scholar 

  15. Jin, D.Q., Sung, J.Y., Hwang, Y.K., Kwon, K.J., Han, S.H., Min, S.S., Han, J.S.: Dexibuprofen (S(+)-isomer ibuprofen) reduces microglial activation and impairments of spatial working memory induced by chronic lipopolysaccharide infusion. Pharmacol. Biochem. Behav. 89, 404–411 (2008). doi:10.1016/j.pbb.2008.01.016

    Article  CAS  Google Scholar 

  16. Babazadeh, M.: Design, synthesis and in vitro evaluation of vinyl ether type polymeric prodrugs of ibuprofen, ketoprofen and naproxen. Int. J. Pharm. 356, 167–173 (2008). doi:10.1016/j.ijpharm.2008.01.003

    Article  CAS  Google Scholar 

  17. Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tool to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)

    Article  CAS  Google Scholar 

  18. Arnaud, A., Bouteiller, L.: Isothermal titration calorimetry of supramolecular polymers. Langmuir 20, 6858–6863 (2004). doi:10.1021/la049365d

    Article  CAS  Google Scholar 

  19. Pinault, T., Isare, B., Bouteiller, L.: Solvents with similar bulk properties induce distinct supramolecular architectures. Chem. Phys. Chem. 7, 816–819 (2006). doi:10.1002/cphc.200500636

    CAS  Google Scholar 

  20. Obert, E., Bellot, M., Bouteiller, L., Andrioletti, F.: Both water- and organo-soluble supramolecular polymer stabilized by hydrogen-bonding and hydrophobic interactions. J. Am. Chem. Soc. 129, 15601–15605 (2007). doi:10.1021/ja074296l

    Article  CAS  Google Scholar 

  21. Ladbury, J.E., Chowdhry, B.Z.: Sensing the heat: the application of isothermal studies of biomolecular interactions. Chem. Biol. 3, 791–801 (1996). doi:10.1016/S1074-5521(96)90063-0

    Article  CAS  Google Scholar 

  22. Cooper, M.A.: Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem. 377, 834–842 (2003). doi:10.1007/s00216-003-2111-y

    Article  CAS  Google Scholar 

  23. Song, L.D., Rosen, M.J.: Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir 12, 1149–1153 (1996). doi:10.1021/la950508t

    Article  CAS  Google Scholar 

  24. Bai, G.Y., Wang, Y.J., Yan, H.K.: Thermodynamics of interaction between cationic gemini surfactants and hydrophobically modified polymers in aqueous solutions. J. Phys. Chem. B 106, 2153–2159 (2002). doi:10.1021/jp0123839

    Article  CAS  Google Scholar 

  25. Liu, L., Li, X.S., Guo, Q.X., Liu, Y.C.: Hartree-Fock and density functional theory studies on the molecular recognition of the cyclodextrin. Chin. Chem. Lett. 10, 1053–1056 (1999)

    CAS  Google Scholar 

  26. Liu, L., Guo, Q.X.: Use of quantum chemical methods to study cyclodextrin chemistry. J. Incl. Phenom. Macrocycl. Chem. 50, 95–103 (2004)

    CAS  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A. Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian, Inc., Pittsburgh (1998)

  28. Sun, D.Z., Wang, S.B., Wei, X.L., Yin, B.L.: A study of α-cyclodextrin with a group of cationic gemini surfactants utilizing isothermal titration calorimetry and NMR. J. Chem. Thermodyn. 37, 431–439 (2005). doi:10.1016/j.jct.2004.10.004

    Article  CAS  Google Scholar 

  29. Medek, A., Hajduk, P.J., Mack, J., Fesik, S.W.: The use of differential chemical shifts for determining the binding site location and orientation of protein-bound ligands. J. Am. Chem. Soc. 122, 1241–1242 (2000). doi:10.1021/ja993921m

    Article  CAS  Google Scholar 

  30. Cui, Y.F., Wen, J., Sze, K.H., Man, D., Lin, D.H., Liu, M.L., Zhu, G.: Interaction between calcium-free calmodulin and IQ motif of neurogranin studied by nuclear magnetic resonance spectroscopy. Anal. Biochem. 315, 175–182 (2003). doi:10.1016/S0003-2697(03)00007-1

    Article  CAS  Google Scholar 

  31. Yan, C.L., Xiu, Z.L., Li, X.H., Hao, C.: Molecular modeling study of β-cyclodextrin complexes with (+)-catechin and (−)-epicatechin. J. Mol. Graph. Model. 26, 420–428 (2007). doi:10.1016/j.jmgm.2007.010

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhi Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, S., Zhang, Q., Zhang, C. et al. Isothermal Titration Calorimetry and Theoretical Studies on Host-guest Interaction of Ibuprofen with α-, β- and γ-Cyclodextrin. J Solution Chem 38, 531–543 (2009). https://doi.org/10.1007/s10953-009-9394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9394-3

Keywords

Navigation