Advertisement

Journal of Solution Chemistry

, Volume 38, Issue 5, pp 601–618 | Cite as

Standard Molar Volumes and Heat Capacities of Aqueous Solutions of Trifluoromethanesulfonic Acid at Temperatures up to 573 K and Pressures to 30 MPa

  • Emilie Pourtier
  • Karine Ballerat-Busserolles
  • Vladimir Majer
Article

Abstract

Densities and heat capacities of dilute aqueous solutions (0.025 to 0.4 mol⋅kg−1) of trifluoromethanesulfonic acid (triflic acid) were measured with original high-temperature, high-pressure instruments at temperatures and pressures up to 574 K and 31 MPa, respectively. Standard molar volumes and standard molar heat capacities were obtained via extrapolation of the apparent molar properties to infinite dilution. The evolution of these standard derivative properties of triflic acid with temperature and pressure is qualitatively compared with that of other acids of different strengths.

Keywords

Density Heat capacity Apparent molar volume Apparent molar heat capacity Standard molar volume Standard molar heat capacity Trifluoromethanesulfonic acid Triflic acid Dilute solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xiao, C., Tremaine, P.R.: Apparent molar volumes of aqueous sodium trifluoromethanesulfonate and trifluoromethanesulfonic acid from 283 K to 600 K and pressures up to 20 MPa. J. Solution Chem. 26, 277–294 (1997) CrossRefGoogle Scholar
  2. 2.
    Xiao, C., Pham, T., Xie, W., Tremaine, P.R.: Apparent molar volumes and heat capacities of aqueous trifluoromethanesulfonic acid and its sodium salt from 283 to 328 K. J. Solution Chem. 30, 201–211 (2001) CrossRefGoogle Scholar
  3. 3.
    Hynek, V., Obsil, M., Majer, V., Quint, J., Grolier, J.-P.E.: A vibrating tube flow densimeter for measurements with corrosive solutions at temperatures up to 723 K and pressures up to 40 MPa. Int. J. Thermophys. 18, 719–732 (1997) CrossRefGoogle Scholar
  4. 4.
    Hill, P.: A unified fundamental equation for the thermodynamic properties of H2O. J. Phys. Chem. Ref. Data 19, 1233–1274 (1990) Google Scholar
  5. 5.
    Archer, D.: Thermodynamic properties of the NaCl + H2O system. II: Thermodynamic properties of NaCl(aq), NaCl⋅2H2O(cr) and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992) CrossRefGoogle Scholar
  6. 6.
    Hnedkovsky, L., Hynek, V., Majer, V., Wood, R.H.: A new version of differential flow heat capacity calorimeter; tests of heat loss corrections and heat capacities of aqueous NaCl from T=300 K to T=623 K. J. Chem. Thermodyn. 34, 755–782 (2002) CrossRefGoogle Scholar
  7. 7.
    Archer, D.G., Wang, P.: The dielectric constant of water and Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990) CrossRefGoogle Scholar
  8. 8.
    Majer, V., Sedlbauer, J., Wood, R.H.: Calculation of standard thermodynamic properties of aqueous electrolytes and nonelectrolytes. In: Palmer, D.A., Harvey, A.H., Fernandez-Prini, R. (eds.) Aqueous Systems at Elevated Temperatures and Pressures; Physical Chemistry in Water, Steam and Hydrothermal Solutions, pp. 99–144. Elsevier, Amsterdam (2004) CrossRefGoogle Scholar
  9. 9.
    Ballerat-Busserolles, K., Sedlbauer, J., Majer, V.: Standard thermodynamic properties of H3PO4(aq) over a wide range of temperatures and pressures. J. Phys. Chem. B. 111, 181–190 (2007) CrossRefGoogle Scholar
  10. 10.
    Hnedkovsky, L., Majer, V., Wood, R.H.: Volumes and heat capacities of H3BO3(aq) at temperatures from 298.15 K to 705 K and at pressures to 35 MPa. J. Chem. Thermodyn. 27, 801–814 (1995) CrossRefGoogle Scholar
  11. 11.
    Majer, V., Sedlbauer, J., Hnedkovsky, L., Wood, R.H.: Thermodynamics of aqueous acetic and propionic acids and their anions over a wide range of temperatures and pressures. Phys. Chem. Chem. Phys. 2, 2907–2917 (2000) CrossRefGoogle Scholar
  12. 12.
    Anisimov, M.A., Sengers, J.V., Levelt Sengers, J.M.V.: Near-critical behaviour in aqueous systems. In: Palmer, D.A., Harvey, A.H., Fernandez-Prini, R. (eds.) Aqueous Systems at Elevated Temperatures and Pressures; Physical Chemistry in Water, Steam and Hydrothermal Solutions, pp. 29–72. Elsevier, Amsterdam (2004) CrossRefGoogle Scholar
  13. 13.
    Slavik, M., Sedlbauer, J., Ballerat-Busserolles, K., Majer, V.: Heat capacities of aqueous solutions of acetone; 2,5-hexanedione; diethyl ether; 1,2-dimethoxyethane; benzyl alcohol; and cyclohexanol at temperatures to 523 K. J. Solution Chem. 36, 107–134 (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Emilie Pourtier
    • 1
  • Karine Ballerat-Busserolles
    • 1
  • Vladimir Majer
    • 1
  1. 1.Laboratoire de Thermodynamique et Interactions MoléculairesUniversité Blaise Pascal Clermont II, FRE/CNRS 3099AubièreFrance

Personalised recommendations