Journal of Solution Chemistry

, Volume 37, Issue 7, pp 933–946 | Cite as

The Interaction of Arsenazo III with Nd(III)—A Chemometric and Metrological Analysis

  • M. Kaczmarek
  • G. Meinrath
  • S. Lis
  • A. Kufelnicki


Interactions of Arsenazo III with Nd(III) in aqueous solutions (pH range 3 to 4) were studied using a spectrophotometric method. Some discrepancies are present in literature concerning the concentrations of the prevailing species and their composition. Threshold bootstrap computer-assisted target factor analysis (TB CAT) was applied to the evaluation of UV-VIS spectra of Arsenazo III in aqueous solutions containing varying amounts of neodymium(III) ions. The thus obtained experimental data are interpreted with consideration of the measurement uncertainties affecting this system. Within the limits of resolution of the experimental method, two complexes NdAazo and Nd(Aazo)2 were indicated in the studied pH range. The values of formation constants for log 10 β 11 fall in the range 4.9 to 6.3 and for log 10 β 12 fall between 10.5 and 12.1.


Chemometrics Metrology in chemistry Complexes Arsenazo III Nd(III) ion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Savvin, S.B.: Analytical use of arsenazo III—Determination of thorium, zirconium, uranium and rare earth elements. Talanta 8, 673–685 (1961) CrossRefGoogle Scholar
  2. 2.
    Singer, E., Matucha, M.: Erfahrungen mit der Bestimmung von Uran in Erzen und Gesteinen mit Arsenazo III. Fresenius Z. Anal. Chem. 191, 248–253 (1962) CrossRefGoogle Scholar
  3. 3.
    Nemcova, I., Metal, B., Podlaha, J.: Dissociation constants of arsenazo III. Talanta 33, 841–842 (1986) CrossRefGoogle Scholar
  4. 4.
    Rohwer, H., Collier, N., Hosten, E.: Spectrophotometric study of arsenazo III and its interactions with lanthanides. Anal. Chim. Acta 314, 219–223 (1995) CrossRefGoogle Scholar
  5. 5.
    Rohwer, H., Hosten, E.: pH dependence of the reactions of arsenazo III with the lanthanides. Anal. Chim. Acta 339, 271–277 (1997) CrossRefGoogle Scholar
  6. 6.
    Lu, Y.W., Keita, B., Nadjo, L.: Rational approach of the stoichiometries of lanthanide complexes with α 2-[P2W17O61]10− heteropolytungstate in aqueous solution. Polyhedron 23, 1579–1586 (2004) CrossRefGoogle Scholar
  7. 7.
    Lu, Y.W., Laurent, G., Pereira, H.: Interactions between lanthanides and arsenazo III. Talanta 62, 959–970 (2004) CrossRefGoogle Scholar
  8. 8.
    Hosten, E., Rohwer, H.E.: Complexation reactions of uranyl with arsenazo III. Anal. Chim. Acta 355, 95–100 (1997) CrossRefGoogle Scholar
  9. 9.
    Meinrath, G., Volke, P., Helling, C., Dudel, E.G.: Determination and interpretation of environmental water samples contaminated by uranium mining activities. Fresenius J. Anal. Chem. 364, 191–202 (1999) CrossRefGoogle Scholar
  10. 10.
    Close, I., Lännergren, J.I.: Arsenazo III calcium transients and latency relaxation in frog skeletal muscle fibers at different sarcomere lengths. J. Physiol. 355, 323–344 (1984) Google Scholar
  11. 11.
    Rowatt, E., Williams, R.J.P.: The interaction of cations with the dye arsenazo III. Biochem. J. 259, 295–298 (1989) Google Scholar
  12. 12.
    Kufelnicki, A., Lis, S., Meinrath, G.: Application of cause-and-effect analysis to potentiometric titration. Anal. Bioanal. Chem. 382, 1652–1661 (2005) CrossRefGoogle Scholar
  13. 13.
    Meinrath, G., Schneider, P.: Quality Assurance in Chemistry and Environmental Science. Springer, Heidelberg (2007), p. 218 Google Scholar
  14. 14.
    Meinrath, G., Lis, S.: Application of cause-and-effect diagrams to the interpretation of UV-Vis spectroscopic data. Anal. Bioanal. Chem. 372, 333–340 (2002) CrossRefGoogle Scholar
  15. 15.
    Cartwright, H.: Determination of the dimensionality of spectroscopic data by submatrix analysis. J. Chemometrics 1, 111–119 (1987) CrossRefGoogle Scholar
  16. 16.
    Hopke, P.K.: Target transformation factor analysis. Chemom. Intell. Lab. Syst. 6, 7–19 (1989) CrossRefGoogle Scholar
  17. 17.
    Malinowski, E.R.: Factor Analysis in Chemistry, 3rd edn, p. 422. Wiley, New York (2002) Google Scholar
  18. 18.
    ISO Guide to the Expression of Uncertainty in Measurement, 2nd edn. Geneva/CH (1995) Google Scholar
  19. 19.
    EURACHEM/CITAC, Quantifying Uncertainty in Analytical Measurement, 2nd ed. (2000). Last accessed June 2007
  20. 20.
    Meinrath, G.: Measurement uncertainty of thermodynamic data. Fresenius J. Anal. Chem. 369, 690–697 (2001) CrossRefGoogle Scholar
  21. 21.
    Papadakis, I., van Nevel, L., Harper, C., Aregbe, Y., Taylos, P.D.P.: IMEP-12: Trace elements in water; objective evaluation of the performance of the laboratories when measuring quality parameters prescribed in the European Directive 98/83/EC. Accred. Qual. Assur. 12, 105–112 (2007) CrossRefGoogle Scholar
  22. 22. (International Measurement Evaluation Programme of IRMM, the European Metrological Institution)
  23. 23.
    Meinrath, G., Camoes, M.F., Spitzer, P., Bühler, H., Mariassy, M., Pratt, K., Rivier, C.: In: Faigelj, A., Belli, M., Sansone, U. (eds.) Combining and Reporting Analytical Results, pp. 85–91. Royal Chemical Society, London (2007) Google Scholar
  24. 24.
    Filella, M., May, P.M.: Reflections on the calculation and publication of potentiometrically determined formation constants. Talanta 65, 1221–1225 (2005) CrossRefGoogle Scholar
  25. 25.
    Meinrath, G., Lis, S., Piskula, Z., Glatty, Z.: An application of the total measurement uncertainty budget concept to the thermodynamic data of uranyl(VI) complexation by sulfate. J. Chem. Thermodyn. 38, 1274–1284 (2006) CrossRefGoogle Scholar
  26. 26.
    Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970) CrossRefGoogle Scholar
  27. 27.
    Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman and Hall, London (1993) Google Scholar
  28. 28.
    Lis, S., But, S., Meinrath, G.: Spectroscopic characterization of chosen Ln(III) polyoxometalate complexes with organic counter cations in solid and in non-aqueous solutions. J. Alloys Comp. 408–412, 958–961 (2006) CrossRefGoogle Scholar
  29. 29.
    Meinrath, G., Lis, S., Böhme, U.: Quantitative evaluation of Ln(III) pyridine N-oxide carboxylic acid spectra under chemometric and metrological aspects. J. Alloys Comp. 408–412, 962–969 (2006) CrossRefGoogle Scholar
  30. 30.
    Nowicka-Jankowska, T.: Some properties of isosbestic points. J. Inorg. Nucl. Chem. 33, 2043–2050 (1971) CrossRefGoogle Scholar
  31. 31.
    Stynes, D.: Misinterpretation of isobestic points. Ambident properties of imidazole. Inorg. Chem. 14, 453–454 (1975) CrossRefGoogle Scholar
  32. 32.
    Mayer, R.G., Drago, R.S.: Interpretation of isosbestic points. Inorg. Chem. 15, 2010–2011 (1976) CrossRefGoogle Scholar
  33. 33.
    Meinrath, G., Lis, S., Piskula, Z.: Statistical analysis of the impact of spectral correlation on observed formation constants from UV–visible spectroscopic measurements. Anal. Bioanal. Chem. 378, 221–226 (2004) CrossRefGoogle Scholar
  34. 34.
    Buck, R.P., Rondinini, S., Covington, A.K., Baucke, F.G.K., Brett, C.M.A., Camoes, M.F., Milton, M.J.T., Mussini, T., Naumann, R., Pratt, K.W., Spitzer, P., Wilson, G.S.: Measurement of pH. Definition, standards and procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 74, 2169–2200 (2002) CrossRefGoogle Scholar
  35. 35.
    Meinrath, G.: Robust spectral analysis by moving block bootstrap designs. Anal. Chim. Acta 415, 105–115 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Kaczmarek
    • 1
  • G. Meinrath
    • 2
    • 3
  • S. Lis
    • 1
  • A. Kufelnicki
    • 4
  1. 1.Faculty of Chemistry, Department of Rare EarthsAdam Mickiewicz University in PoznanPoznanPoland
  2. 2.RER Consultants Schiessstattweg 3aPassauGermany
  3. 3.Department of Inorganic ChemistryTechnische Universität Bergakademie FreibergFreibergGermany
  4. 4.Laboratory of Physical and Biocoordination ChemistryMedical University of LodzLodzPoland

Personalised recommendations