Quasi-thermodynamics of Viscous Flow of Electrolyte Solutions in Aqueous, Non-aqueous and Mixed Aqueous Solvents

  • David Feakins
  • Fiona M. Bates
  • W. Earle Waghorne


Viscosity B-coefficients for cesium chloride and lithium sulfate in methanol + water mixtures at 25 and 35 °C are reported. A general treatment of the quasi-thermodynamics of viscous flow of electrolyte solutions is described. ΔG 3 Θ (1→1′), the contribution made to the Gibbs energy of activation of the solution by the influence of the solute on the solvent, is a function of solute–solvent interactions only; but, ΔH 3 Θ (1→1′) and ΔS 3 Θ (1→1′) also reflect the solvent–solvent interactions. In aqueous solution all alkali-metal ions except Li+ are sterically unsaturated, having solvent co-ordination numbers n<n max , the maximum allowed sterically. Such complexes exchange molecules with the solvent more readily than saturated ones and have energy–reaction co-ordinate diagrams in forms that explain the negative B or ΔG 3 Θ (1→1′) values found in aqueous solution. Saturated complexes are the norm in non-aqueous solvents, and the ΔG 3 Θ (1→1′) values are determined mainly by the secondary solvation. Behavior in mixed solvents reflects the transition from aqueous to non-aqueous behavior across the range of solvent composition.


Viscosity B-coefficient Cesium chloride Lithium sulfate Methanol Water Transition-state theory Quasi-thermodynamics 


  1. 1.
    Feakins, D., Freemantle, D.J., Lawrence, K.G.: Transition state treatment of the relative viscosity of electrolyte solutions. J. Chem. Soc. Faraday Trans. I 70, 795–806 (1974) CrossRefGoogle Scholar
  2. 2.
    Feakins, D., Waghorne, W.E., Lawrence, K.G.: The viscosity and structure of solutions. Part 1. A new theory of the Jones-Dole B-coefficient and the related activation parameters. Application to aqueous solutions. J. Chem. Soc. Faraday Trans. I 82, 563–568 (1986) CrossRefGoogle Scholar
  3. 3.
    Feakins, D., Canning, F.M., Mullally, J.J., Waghorne, W.E.: The thermodynamics of solutions. Pure Appl. Chem. 61, 133–142 (1989) CrossRefGoogle Scholar
  4. 4.
    Feakins, D., Bates, F.M., Waghorne, W.E., Lawrence, K.G.: Relative viscosities and quasi-thermodynamics of solutions of tert.-butyl alcohol in the methanol–water system: a different view of the alkyl–water interaction. J. Chem. Soc. Faraday Trans. I 89, 3381–3385 (1993) CrossRefGoogle Scholar
  5. 5.
    Neilson, G.W., Mason, P.E., Ramos, S., Sullivan, D.: Neutron and X ray scattering studies of hydration in aqueous solutions. Philos. Trans. Roy. Soc. A 359, 1575–1591 (2001) CrossRefGoogle Scholar
  6. 6.
    Heinzinger, K.: The structure of aqueous electrolyte solutions as derived from MD (molecular dynamics) simulations. Pure Appl. Chem. 57, 1031–1042 (1985) CrossRefGoogle Scholar
  7. 7.
    Samoilov, O.Ya.: A new approach to the study of hydration of ions in aqueous solution. Discuss. Faraday Soc. 24, 1031–1042 (1957) Google Scholar
  8. 8.
    Ives, D.J.G., Marsden, P.: The ionisation functions of di-isopropylcyanoacetic acid in relation to hydration equilibria and the compensation law. J. Chem. Soc., 649–676 (1965) Google Scholar
  9. 9.
    Ben-Naim, A.: A simple model for demonstrating the relation between solubility, hydrophobic interaction, and structural changes in the solvent. J. Phys. Chem. 82, 874–885 (1978) CrossRefGoogle Scholar
  10. 10.
    Frank, H.S., Evans, M.W.: Free volume and entropy in condensed systems III entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945) CrossRefGoogle Scholar
  11. 11.
    Frank, H.S., Wen, W.-Y.: Structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Discuss. Faraday Soc. 24, 133–140 (1957) CrossRefGoogle Scholar
  12. 12.
    Glasstone, S., Laidler, K.J., Eyring, H.: The Theory of Rate Processes. McGraw-Hill, New York (1941), p. 480 Google Scholar
  13. 13.
    Hickey, K., Waghorne, W.E., Sacco, A.: Comparison of the activation free energies for viscous flow and for diffusion in dilute solutions, derivation of the expression for the effect of the solute on the activation free energy of diffusion of the solute, and application to solutions of N,N-dimethylformamide in water, ethanol, and acetonitrile. J. Phys. Chem. 105, 1093–1096 (2001) CrossRefGoogle Scholar
  14. 14.
    de Valera, E., Feakins, D., Waghorne, W.E.: Relationship between the enthalpy of transfer of a solute and the thermodynamic mixing functions of mixed solvents. J. Chem. Soc. Faraday Trans. I 79, 1061–1071 (1983) CrossRefGoogle Scholar
  15. 15.
    Crudden, J., Delaney, G.M., Feakins, D., O’Reilly, P.J., Waghorne, W.E., Lawrence, K.G.: The viscosity and structure of solutions. Part 2. Measurement of the B coefficients of viscosity for alkali-metal chlorides in propan-1-ol–water mixtures at 25 and 35 °C. J. Chem. Soc. Faraday Trans. I 82, 2195–2206 (1986) CrossRefGoogle Scholar
  16. 16.
    Feakins, D., Khoo, K.H., Lorimer, J.P., O’Shaughnessy, D.A., Voice, P.J.: Washburn numbers. Part 2. Alkali metal chlorides in the methanol + water and dioxan + water systems; sodium halides in the methanol + water system. Results, formal relationships, interpretation and preferential solvation. J. Chem. Soc. Faraday Trans. I 72, 2661–2680 (1976) and references therein CrossRefGoogle Scholar
  17. 17.
    Righellato, E.C., Davies, C.W.: The extent of dissociation of salts in water. Part II. Uni-bivalent salts. Trans. Faraday Soc. 26, 592–599 (1930) CrossRefGoogle Scholar
  18. 18.
    Kaminsky, M.: Concentration- and temperature-dependence of the viscosity of aqueous solutions of strong electrolytes. II. Sodium chloride, lithium sulfate, ferrous chloride, and cerium chloride solutions. Z. Phys. Chem. N.F. 8, 173–191 (1956) Google Scholar
  19. 19.
    Millero, F.J.: The molal volumes of electrolytes. Chem. Rev. 71, 147 (1971) CrossRefGoogle Scholar
  20. 20.
    Hodges, A.M., Kilpatrick, N.W., McTigue, P., Perera, J.M.: The solvation potential at the interface between water and methanol + water mixtures. J. Electroanal. Chem. 215, 63–82 (1986) CrossRefGoogle Scholar
  21. 21.
    Crickard, K., Skinner, J.F.: Negative viscosity B coefficients in nonaqueous solvents. J. Phys. Chem. 73, 2060–2062 (1969) CrossRefGoogle Scholar
  22. 22.
    Crudden, J., Delaney, G.M., Feakins, D., O’Reilly, P.J., Waghorne, W.E., Lawrence, K.G.: The viscosity and structure of solutions. Part 3. Interpretation of the thermodynamic activation parameters for propan-1-ol–water–electrolyte systems. J. Chem. Soc. Faraday Trans. I 82, 2207–2219 (1986) CrossRefGoogle Scholar
  23. 23.
    Bicknell, R.T.M., Lawrence, K.G., Feakins, D.: Ionic viscosity B coefficients in dimethyl sulphoxide at 25, 35 and 45 °C. J. Chem. Soc. Faraday Trans. I 76, 637–647 (1980) CrossRefGoogle Scholar
  24. 24.
    Newsome, J., Neilson, G.W., Enderby, J.E.: Lithium ions in aqueous solution. J. Phys. C Solid State Phys. 13, L923–L926 (1980) CrossRefGoogle Scholar
  25. 25.
    Feakins, D., O’Neill, R.D., Waghorne, W.E., Ward, A.J.I.: The Erdey-Grúz experiment. Relative solvent transport numbers for ion constituents in mixtures of water with raffinose, glycine, allyl alcohol, dimethylsulphoxide and dioxan. J. Chem. Soc. Faraday Trans. I 78, 1431–1449 (1982) CrossRefGoogle Scholar
  26. 26.
    Feakins, D., O’Neill, R., Waghorne, W.E.: Preferential solvation of ions and solvent transport. Pure Appl. Chem. 54, 2317–2326 (1982) CrossRefGoogle Scholar
  27. 27.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworth, London (1959), p. 70 Google Scholar
  28. 28.
    Feakins, D., Hickey, B.E., Knox, M., McCarthy, P.J., Waghorne, W.E., Clune, T.A.: Thermodynamics of ion solvation in mixed aqueous solvents. Part 2. Effect of steric hindrance on free energies of transfer of cations; correlations with structural determinations. J. Chem. Soc. Faraday Trans. I 84, 4219–4233 (1988) CrossRefGoogle Scholar
  29. 29.
    Neilson, G.W., Adya, A.K.: Neutron diffraction studies on liquids. Ann. Rep. Chem. Sect. C Roy. Soc. Chem. 93, 101–145 (1997) CrossRefGoogle Scholar
  30. 30.
    Bernal, J.D., Fowler, R.H.: A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933) CrossRefGoogle Scholar
  31. 31.
    Skipper, N.T., Neilson, G.W., Cummings, S.C.: An X-ray diffraction study of Ni(aq)2+ and Mg(aq)2+ by difference methods. J. Phys. Condens. Matter 1, 3489–3506 (1989) CrossRefGoogle Scholar
  32. 32.
    Hewish, N.A., Neilson, G.W., Enderby, J.E.: Environment of Ca2+ ions in aqueous solvent. Nature (London) 297, 138–139 (1982) CrossRefGoogle Scholar
  33. 33.
    Powell, D.H., Barnes, A.C., Enderby, J.E., Neilson, G.W., Salmon, P.S.: The hydration structure around chloride ions in aqueous solution. Faraday Discuss. Chem. Soc. 85, 137–146 (1988) CrossRefGoogle Scholar
  34. 34.
    Némethy, G., Scheraga, H.A.: Structure of water and hydrophobic bonding in proteins. I. A model for the thermodynamic properties of liquid water. J. Chem. Phys. 36, 3382–3400 (1962) CrossRefGoogle Scholar
  35. 35.
    Franks, F., Ives, D.J.G.: The structural properties of alcohol–water mixtures. Q. Rev. Chem. Soc. 20, 1–44 (1966) CrossRefGoogle Scholar
  36. 36.
    Kaminsky, M.: Ion-solvent interaction and the viscosity of strong-electrolyte solutions. Discuss. Faraday Soc. 24, 171–179 (1957) CrossRefGoogle Scholar
  37. 37.
    Jenkins, H.D.B., Marcus, Y.: Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995) CrossRefGoogle Scholar
  38. 38.
    Feakins, D., Watson, P.: Studies in ion solvation. Part II. Properties of ion constituents. J. Chem. Soc., 4734–4741 (1963) Google Scholar
  39. 39.
    Drew, M.G.B.: Structures of high coordination complexes. Coord. Chem. Rev. 24, 179–275 (1977) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David Feakins
    • 1
  • Fiona M. Bates
    • 1
  • W. Earle Waghorne
    • 1
  1. 1.School of Chemistry and Chemical BiologyUniversity College DublinDublinIreland

Personalised recommendations