Advertisement

Journal of Solution Chemistry

, Volume 37, Issue 5, pp 677–688 | Cite as

Viscosities for Ionic Liquid Binary Mixtures with a Common Ion

  • Paloma Navia
  • Jacobo Troncoso
  • Luis Romaní
Article

Abstract

At present, there is a considerable amount of work devoted to the study of the thermophysical properties of pure ionic liquids, which contrasts with the few data available for their mixtures. One of the most appealing characteristics of ionic liquids is the capability of subtly changing the chemical structure of the cation and anion in order to design appropriate solvents for specific applications. Mixtures of ionic liquids increase enormously this specificity, due to the unlimited combinations that arise from mixing two or more ionic liquids. In this context, the study of the thermophysical properties of these mixtures is revealed as a fundamental task. In this work the viscosities of the ionic liquid binary mixtures with a common ion ([C6mim] + [C2mim])[BF4], ([C6mim] + [C4mim])[BF4], [C4mim]([BF4] + [MeSO4]) and [C4mim]([PF6] + [BF4]) were determined within the temperature range (298.15–308.15) K. The temperature dependence of the viscosity for pure liquids is analyzed by means of the Vogel-Tammann-Fulcher equation and several mixing rules are applied for the mixtures.

Keywords

Viscosity Ionic liquids Common ion Mixing rules Vogel-Tammann-Fulcher equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seddon, K.R.: Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997) CrossRefGoogle Scholar
  2. 2.
    Rebelo, L.P.N., Canongia Lopes, J.N., Esperança, J.M.S.S., Filipe, E.: On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J. Phys. Chem. B 109, 6040–6043 (2005) CrossRefGoogle Scholar
  3. 3.
    Paulechka, Y.U., Zaitsau, Dz.H., Kabo, G.J., Strechan, A.A.: Vapour pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) amide. Thermochim. Acta 439, 158–160 (2005) CrossRefGoogle Scholar
  4. 4.
    Earle, M.J., Esperança, J.M.S.S., Gilea, M.A., Canongia Lopes, J.N., Rebelo, L.P.N., Magee, J.W., Seddon, K.R., Widegren, J.A.: The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006) CrossRefGoogle Scholar
  5. 5.
    Brennecke, J.F., Maginn, E.J.: Ionic liquids: Innovative fluids for chemical processing. AIChe J. 47, 2384–2389 (2001) CrossRefGoogle Scholar
  6. 6.
    Holbrey, J.D., Seddon, K.R.: Ionic liquids. Clean Prod. Process. 1, 223–236 (1999) Google Scholar
  7. 7.
    Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999) CrossRefGoogle Scholar
  8. 8.
    Fadeev, A.G., Meagher, M.M.: Opportunities for ionic liquids in recovery of biofuels. Chem Commun. 295 (2001) Google Scholar
  9. 9.
    Wilkes, J.S.: Properties of ionic liquids solvents for catalysis. Mol. Catal. A Chem. 214, 11–17 (2004) CrossRefGoogle Scholar
  10. 10.
    Seddon, K.R., Stark, A., Torres, M.J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000) CrossRefGoogle Scholar
  11. 11.
    Hayamizu, K., Aihara, Y., Nakagawa, H., Nukuda, T., Price, W.S.: Ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4. J. Phys. Chem. B 108, 19527–19532 (2004) CrossRefGoogle Scholar
  12. 12.
    Tokuda, H., Hayamizu, K., Ishii, K., Susan, Md.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004) CrossRefGoogle Scholar
  13. 13.
    Liu, W., Zhao, T., Zhang, Y., Wang, H., Yu, K.: The physical properties of aqueous solutions of the ionic liquid [BMIM] [BF4]. J. Solution Chem. 35, 1337–1346 (2006) CrossRefGoogle Scholar
  14. 14.
    Okoturo, O.O., VanderNoot, T.J.: Temperature dependence of viscosity for room temperature ionic liquids. J. Electroanal. Chem. 568, 167–181 (2004) CrossRefGoogle Scholar
  15. 15.
    Van Valkenburg, M.E., Vaughn, R.L., Williams, M., Wilkes, J.S.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005) CrossRefGoogle Scholar
  16. 16.
    Schröder, C., Wakai, C., Weingärtner, H., Steinhauser, O.: Collective rotational dynamics in ionic liquids: A computational and experimental study of 1-butyl-3-methyl-imidazolium tetrafluoroborate. J. Chem. Phys. 126, 084511 (2007) CrossRefGoogle Scholar
  17. 17.
    Frez, C., Diebold, G.J., Tran, C.D., Yu, S.: Determination of thermal diffusivities, thermal conductivities, and sound speeds of room-temperature ionic liquids by the transient grating technique. J. Chem. Eng. Data 51, 1250–1255 (2006) CrossRefGoogle Scholar
  18. 18.
    Jiqin, Z., Jian, C., Chengyue, L., Weiyang, F.: Viscosities and interfacial properties of 1-methyl-3-butylimidazolium hexafluorophosphate and 1-isobutenyl-3-methylimidazolium tetrafluoroborate ionic liquids. J. Chem. Eng. Data 52, 812–816 (2007) CrossRefGoogle Scholar
  19. 19.
    Harris, K.R., Wolf, L.A., Kanakubo, M.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 50, 1777–1782 (2005) CrossRefGoogle Scholar
  20. 20.
    Harris, K.R., Kanakubo, M., Wolf, L.A.: Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data 52, 1080–1085 (2007) CrossRefGoogle Scholar
  21. 21.
    Seddon, K.R., Stark, A., Torres, M.-J.: Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids. In: M. Abrahan and Moens (eds.) Clean Solvent: Alternative Media Chemical Reactions and Processing. ACS Symp. Ser., vol. 1, p. 819 (2002) Google Scholar
  22. 22.
    Pereiro, A.B., Verdía, P., Tojo, E., Rodríguez, A.: Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J. Chem. Eng. Data 52, 377–380 (2007) CrossRefGoogle Scholar
  23. 23.
    Navia, P., Troncoso, J., Romaní, L.: Excess magnitudes for ionic liquid binary mixtures with a common ion. J. Chem. Eng. Data 52, 1369–1374 (2007) CrossRefGoogle Scholar
  24. 24.
    Sanmamed, Y.A., González-Salgado, D., Troncoso, J., Cerdeiriña, C.A., Romaní, L.: Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilibr. 252, 96–102 (2007) CrossRefGoogle Scholar
  25. 25.
    Troncoso, J., Cerdeiriña, C.A., Sanmamed, Y.A., Romani, L., Rebelo, L.P.N.: Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 51, 1856–1859 (2004) CrossRefGoogle Scholar
  26. 26.
    Canongia Lopes, J.N., Cordeiro, T.C., Esperança, J.M.S.S., Guedes, H.J.R., Huq, S., Rebelo, L.P.N., Seddon, K.R.: Deviations from ideality in mixtures of two ionic liquids containing a common ion. J. Phys. Chem. B 109, 3519–3525 (2005) CrossRefGoogle Scholar
  27. 27.
    Torres, M.-J.: Ph.D. Thesis, The Queen’s University of Belfast, Belfast (2001) Google Scholar
  28. 28.
    Vila, J., Ginés, P., Pico, J.M., Franjo, C., Jiménez, E., Varela, L.M., Cabeza, O.: Temperature dependence of the electrical conductivity in EMIM-based ionic liquids Evidence of Vogel–Tamman–Fulcher behaviour. Fluid Phase Equilibr. 242, 141–146 (2006) CrossRefGoogle Scholar
  29. 29.
    Angell, C.A., Sare, E.J.: Glass-forming composition regions and glass transition temperatures for aqueous electrolyte solutions. J. Chem. Phys. 52, 1058–1068 (1970) CrossRefGoogle Scholar
  30. 30.
    Zhang, Z.H., Tan, Z.C., Li, Y.S., Sun, L.X.: Thermodynamic investigation of room temperature ionic liquid. Heat capacity and thermodynamic functions of BMIBF4. J. Therm. Anal. Calorim. 85, 551–557 (2006) CrossRefGoogle Scholar
  31. 31.
    Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke, J.F.: Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 37, 559–568 (2005) CrossRefGoogle Scholar
  32. 32.
    Kabo, G.J., Blokhin, A.V., Paulechka, Y.U., Kabo, A.G.M., Shymanovich, M.P., Magee, J.W.: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state. J. Chem. Eng. Data 49, 453–461 (2004) CrossRefGoogle Scholar
  33. 33.
    Domanska, U., Pobudkowska, A., Eckert, F.: Liquid–liquid equilibria in the binary systems (1,3-dimethylimidazolium, or 1-butyl-3-methylimidazolium methylsulfate + hydrocarbons). Green Chem. 8, 268–276 (2006) CrossRefGoogle Scholar
  34. 34.
    Gómez, E., González, B., Domínguez, A., Tojo, E., Tojo, J.: Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Eng. Data 51, 696–701 (2006) CrossRefGoogle Scholar
  35. 35.
    Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem Thermodyn. 11, 1061–1064 (1979) CrossRefGoogle Scholar
  36. 36.
    Prausnitz, J.M., Lichtentaler, R.N., Azevedo, E.G.: Molecular Thermodynamics of Fluid Phase Equilibria, 2a edn. Prentice–Hall, Englewood Cliffs (1986) Google Scholar
  37. 37.
    Glasstone, S., Laidler, K.J., Eyring, H.: The Theory of Rate Processes, vol. 9, p. 477. MacGraw–Hill, New York (1941) Google Scholar
  38. 38.
    Katti, P.K., Chandhri, M.M.: Viscosities of binary mixtures of benzyl acetate with dioxane, aniline, and m-cresol. J. Chem. Eng. Data 9, 442–443 (1964) CrossRefGoogle Scholar
  39. 39.
    Grunberg, L., Nissan, A.H.: Mixture law for viscosity. Nature 164, 799–800 (1949) CrossRefGoogle Scholar
  40. 40.
    Allal, A., Moha-Ouchane, M., Boned, C.: A new free volume model for dynamic viscosity and density of dense fluids versus pressure and temperature. Phys. Chem. Liq. 39, 1–30 (2001) CrossRefGoogle Scholar
  41. 41.
    Allal, A., Boned, C., Baylaucq, A.: Free-volume viscosity model for fluids in the dense and gaseous states. Phys. Rev. E 64, 011203/1–011203/10 (2001) CrossRefGoogle Scholar
  42. 42.
    Boned, C., Allal, A., Baylaucq, A., Zeberg-Mikkelsen, C.K., Bessieres, D., Quinones-Cisneros, S.E.: Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure. Phys. Rev. E 69, 031203/1–031203/6 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de Física AplicadaFacultad de Ciencias de OurenseOurenseSpain

Personalised recommendations