Advertisement

Journal of Solution Chemistry

, Volume 37, Issue 4, pp 487–501 | Cite as

Entropy Changes in Aqueous Solutions of Non-polar Substances and in Bio-complex Formation

  • E. Fisicaro
  • C. Compari
  • E. Duce
  • A. Braibanti
SIMEC’06

Abstract

The entropy changes, ΔS app, (i) for dissolution in water of non-polar substances and (ii) for protein-ligand complexation show linear dependences on the logarithm of the absolute temperature. For every compound, the slope m (S)C p for the line ΔS app=f(ln T) depends on the size of the molecule and is exactly equal to the slope m (H)C p found in the diagram ΔH app=f(T). This means that the slopes are rigorously proportional (with a ratio m (S)/n w=C p,w) where n w is the number of involved water molecules as determined from the enthalpy change ΔH app=f(T). It is also worth noting that the value of n w is positive (as well as m (S) and m (H)) in the dissolution of non-polar substances, whereas it is negative (as well as m (S) and m (H)) in bio-complex formation and in micelle formation. The number n w (n w>0) involved in the dissolution of non-polar substances depends on the size of the cavity (excluded volume) formed in the structure of water. These water molecules that have been excluded from the structure of the solvent absorb thermal energy that compensates for the negative enthalpy change, whereas the formation of the cavity implies there should be a large negative entropy contribution. The low solubility of non-polar substances in water depends on the highly negative entropy effect due both to cavity formation and to loss of configurational entropy by the gas trapped in a cage of water molecules. In processes involving association, as in micelle formation and in protein complexation, the cavities surrounding the separate units coalesce and the resultant cavity is smaller than the sum of the previous ones. The n w water molecules (n w<0) needed to fill the excess cavity return to the structure of the bulk solvent and release thermal energy, which compensates for the endothermic enthalpy. The affinity in the association processes is bound, for the most part, to the entropy produced by occupation of part of the cavity by condensation of water molecules. The association processes are therefore entropy driven.

Keywords

Non-polar gases solubility Entropy change Enthalpy change Cavity Bio-complexes Protein-ligand complexes Water structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fisicaro, E., Compari, C., Braibanti, A.: Entropy/enthalpy compensation: hydrophobic effect, micelles and protein complexes. Phys. Chem. Chem. Phys. 6, 4156–4166 (2004) CrossRefGoogle Scholar
  2. 2.
    Fisicaro, E., Compari, C., Braibanti, A.: Response to comment on “Entropy/enthalpy compensation: hydrophobic effect, micelles and protein complexes”. Phys. Chem. Chem. Phys. 7, 1324–1325 (2005) CrossRefGoogle Scholar
  3. 3.
    Wilhelm, E., Battino, R., Wilcock, R.J.: Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977) CrossRefGoogle Scholar
  4. 4.
    Braibanti, A., Fisicaro, E., Compari, C.: Thermal equivalent dilution. J. Phys. Chem. B 102, 8357–8359 (1998) CrossRefGoogle Scholar
  5. 5.
    Graziano, G.: Comment on “Entropy/enthalpy compensation: hydrophobic effect, micelles and protein complexes”. Phys. Chem. Chem. Phys. 7, 1322–1323 (2005) CrossRefGoogle Scholar
  6. 6.
    Murphy, K.P., Privalov, P.L., Gill, S.J.: Common features of protein unfolding and dissolution of hydrophobic compounds. Science (Washington) 247, 559–561 (1990) CrossRefGoogle Scholar
  7. 7.
    Privalov, P.L., Gill, S.J.: Stability of protein structure and hydrophobic interaction. Adv. Prot. Chem. 39, 191–234 (1988) CrossRefGoogle Scholar
  8. 8.
    Abraham, M.H.: Free energies of solution of rare gases and alkanes in water and nonaqueous solvents. A quantitative assessment of the hydrophobic effect. J. Am. Chem. Soc. 109, 5477–5484 (1979) CrossRefGoogle Scholar
  9. 9.
    Abraham, M.H.: Free energies, enthalpies, and entropies of solution of gaseous nonpolar nonelectrolytes in water and nonaqueous solvents. The hydrophobic effect. J. Am. Chem. Soc. 104, 2085–2094 (1982) CrossRefGoogle Scholar
  10. 10.
    Braibanti, A., Fisicaro, E.: Molecular thermodynamics of the denaturation of lysozyme. Thermochim. Acta 241, 131–156 (1994) CrossRefGoogle Scholar
  11. 11.
    Privalov, P.L.: Thermodynamic investigations of biological macromolecules. Pure Appl. Chem. 293–304 (1976) Google Scholar
  12. 12.
    Connell, P., Ghosaini, L., Hu, C.Q., Kitamura, S., Tanaka, A., Sturtevant, J.M.: A differential scanning calorimetric study of the thermal unfolding of seven mutant forms of phage T4 lysozyme. Biochem. 30, 1887–1891 (1991) CrossRefGoogle Scholar
  13. 13.
    Hoefinger, S., Zerbetto, F.: Simple models for hydrophobic hydration. Chem. Soc. Rev. 34, 1012–1020 (2005) CrossRefGoogle Scholar
  14. 14.
    Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005) CrossRefGoogle Scholar
  15. 15.
    Ha, J.-H., Spolar, R.S., Record, M.T., Jr.: Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. J. Mol. Biol. 209, 801–816 (1989) CrossRefGoogle Scholar
  16. 16.
    Baldwin, R.L.: Temperature dependence of the hydrophobic interaction in protein folding. Proc. Nat. Acad. Sci. USA 83, 8069–8072 (1986) CrossRefGoogle Scholar
  17. 17.
    Becktel, W.J., Schellman, J.A.: Protein stability curves. Biopolymer 26, 1859–1877 (1987) CrossRefGoogle Scholar
  18. 18.
    Lumry, R., Battistel, E., Jolicoeur, C.: Geometric relaxation in water: its role in hydrophobic hydration. Farad. Symp. Chem. Soc. 17, 93–108 (1982) CrossRefGoogle Scholar
  19. 19.
    Abraham, M.H.: Hydrophobic effect of the methylene group: enthalpy and entropy contributions. J. Am. Chem. Soc. 102, 5910–5912 (1980) CrossRefGoogle Scholar
  20. 20.
    Singh, H.N., Saleem, S.M., Singh, R.P., Birdi, K.S.: Micelle formation of ionic surfactants in polar nonaqueous solvents. J. Phys. Chem. 84, 2191–2194 (1980) CrossRefGoogle Scholar
  21. 21.
    Jalali, F., Shamsipur, M., Alizadeh, N.: Conductance study of the thermodynamics of micellization of 1-hexadecylpyridinium bromide in (water + cosolvent). J. Chem. Thermodyn. 32, 755–765 (2000) CrossRefGoogle Scholar
  22. 22.
    Origlia-Luster, M.L., Patterson, B.A., Woolley, E.M.: Thermodynamics for self-association of caffeine in water: apparent molar volumes and apparent molar heat capacities of aqueous caffeine at temperatures from 278.15 to 393.15 K and at the pressure 0.35 MPa. J. Chem. Thermodyn. 34, 1909–1921 (2002) CrossRefGoogle Scholar
  23. 23.
    Van Os, N.M., Daane, G.J., Bolsman, T.A.B.M.: The effect of chemical structure upon the thermodynamics of micellization of model alkylarenesulfonates. II. Sodium p-(3-alkyl)benzenesulfonate homologs. J. Colloid Interfac. Sci. 123, 267–274 (1988) CrossRefGoogle Scholar
  24. 24.
    Van Os, N.M., Daane, M.G.J., Bolsman, T.A.B.M.: The effect of chemical structure upon the thermodynamics of micellization of model alkylarenesulfonates. I. Sodium p- (x-decyl)benzenesulfonate isomers. J. Colloid Interfac. Sci. 115, 402–409 (1987) CrossRefGoogle Scholar
  25. 25.
    Rouviere, J., Faucompre, B., Lindheimer, M., Partyka, S., Brun, B.: Physical chemistry properties of alkali salts of n-alkyl p-benzene sulfonates: Krafft point and critical micelle concentration. J. Chim. Phys. Phys.-Chim. Biol. 80, 309–314 (1983) Google Scholar
  26. 26.
    Kamenka, N., Chorro, M., Fabre, H., Lindman, B., Rouviere, J., Cabos, C.: Study of aqueous solutions of various n-alkylbenzenesulfonates by viscosity and autodiffusion. Coll. Polymer Sci. 257, 757–767 (1979) CrossRefGoogle Scholar
  27. 27.
    Moroi, Y., Nishikido, N., Uehara, H., Matuura, R.: Interrelation between heat of micelle formation and critical micelle concentration. J. Coll. Interfac. Sci. 50, 254–264 (1975) CrossRefGoogle Scholar
  28. 28.
    Moroi, Y., Sugii, R., Akine, C., Matuura, R.: Anionic surfactants with methylviologen and cupric ions as divalent cationic gegenion(II): Effect of alkyl chain length on solubility and micelle formation. J. Coll. Interfac. Sci. 108, 180–188 (1985) CrossRefGoogle Scholar
  29. 29.
    Barry, B.W., Russell, G.F.J.: Prediction of micellar molecular weights and thermodynamics of micellization of mixtures of alkyltrimethylammonium salts. J. Coll. Interfac. Sci. 40, 174–194 (1972) CrossRefGoogle Scholar
  30. 30.
    Lee, J.C., Timasheff, S.N.: In vitro reconstitution of calf brain microtubules: Effects of solution variables. Biochemistry 16, 1754–1764 (1977) CrossRefGoogle Scholar
  31. 31.
    Hinz, H.J., Gorbunoff, M.J., Price, B., Timasheff, S.N.: Heat capacity microcalorimetry of the in vitro reconstitution of calf brain microtubules. Biochemistry 18, 3084–3089 (1979) CrossRefGoogle Scholar
  32. 32.
    Braibanti, A., Fisicaro, E., Compari, C.: Molecular thermodynamic model for equilibria in solution. I. Reacting and non-reacting ensembles. Thermochim. Acta 320, 253–263 (1998) CrossRefGoogle Scholar
  33. 33.
    Braibanti, A., Fisicaro, E., Compari, C.: Molecular thermodynamic model for equilibria in solution. II. Statistical microscopic properties of ensembles. Thermochim. Acta 320, 265–275 (1998) CrossRefGoogle Scholar
  34. 34.
    Braibanti, A., Fisicaro, F., Compari, C.: Molecular thermodynamic model for equilibria in solution. III. Equilibrium constants and correlation functions in probability, thermodynamic, and kinetic energy space. Thermochim. Acta 320, 101–114 (1998) CrossRefGoogle Scholar
  35. 35.
    Braibanti, A., Fisicaro, E., Compari, C.: Molecular thermodynamic model for equilibria in solution. IV. Macroscopic partition functions. Thermochim. Acta 320, 277–283 (1998) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E. Fisicaro
    • 1
  • C. Compari
    • 1
  • E. Duce
    • 1
  • A. Braibanti
    • 1
  1. 1.Department of Pharmacological, Biological and Applied Chem. Sciences, Physical Chemistry SectionUniversity of ParmaParmaItaly

Personalised recommendations