Advertisement

Journal of Solution Chemistry

, Volume 37, Issue 3, pp 421–431 | Cite as

Activity of Water and Osmotic Coefficients of Histidine Derivatives in Aqueous Solutions at 310.15 K

  • Elena N. Tsurko
  • Roland Neueder
  • Werner Kunz
Article

Abstract

From the data of vapor pressure osmometry the activity of water, osmotic coefficients, and the values of activity coefficients of two derivatives of histidine: N-Boc-L-histidine (Boc-His-OH, m=0.005–0.14 mol⋅kg−1) and N-Boc-L-histidine-methyl ether (Boc-His-OMe, m=0.005–0.05 mol⋅kg−1) are obtained in aqueous solutions at 310.15 K. From the comparison of water activity and osmotic coefficient values it follows that Boc-His-OMe shows a more pronounced deviation from ideality than Boc-His-OH. Both components exhibit a stronger non-ideality than histidine and a weaker one than His⋅HCl. By means of potentiometric titration the acid-base properties of Boc-His-OMe are investigated and the ionization constant at 298.15 K is determined. The pK value related to the acid-base equilibrium of the nitrogen atom in the imido group of the imidazole ring is higher (6.47) than the corresponding value of histidine (6.00).

Keywords

Vapor pressure osmometry Emf Activity of water Activity coefficients Osmotic coefficients N-Boc-L-histidine N-Boc-L-histidine methyl ether Zwitterions Ionic form of amino acid ⋅ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eisenberg, R.S.: Computing the field in proteins and channels. J. Membr. Biol. 150, 1–25 (1996) CrossRefGoogle Scholar
  2. 2.
    Tsurko, E.N., Neueder, R., Kunz, W.: Water activity and osmotic coefficients in solutions of glycine, glutamic acid, histidine and their salts at 310.15 K. J. Solution Chem. 36, 651–672 (2007) CrossRefGoogle Scholar
  3. 3.
    Eisenberg, B.: Ionic channels in biological membranes—electrostatic analysis of a natural nanotube. Contemp. Phys. 39, 447–466 (1998) CrossRefGoogle Scholar
  4. 4.
    Eisenberg, B.: Permeation as a diffusion process. In: DeFelice, L.J. (ed.) Channels, Receptors, and Transporters. Biophysics textbook on line. http://biosci.umn.edu/biophys/OLTB/channel.html
  5. 5.
    Barthel, J., Neueder, R.: Precision apparatus for the static determination of the vapor pressure of solutions. GIT Fachz. Lab. 28, 1002–1012 (1984) Google Scholar
  6. 6.
    Widera, B., Neueder, R., Kunz, W.: Vapor pressures and osmotic coefficients of aqueous solutions of SDS, C6TAB and C8TAB at 25 °C. Langmuir 19, 8226–8229 (2003) CrossRefGoogle Scholar
  7. 7.
    Schmidt, C.L.A., Appleman, W.K., Kirk, P.L.: The apparent dissociation constants of tryptophane and of histidine. J. Biol. Chem. 85, 137–140 (1929) Google Scholar
  8. 8.
    Gibbard, H.F., Scatchard, G.: Liquid—vapor equilibrium of aqueous sodium chloride, from 298 to 373 K and from 1 to 6 mol/kg, and related properties. J. Chem. Eng. Data 19, 281–288 (1973) CrossRefGoogle Scholar
  9. 9.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients of 2-2 Electrolytes. J. Solution Chem. 3, 539–546 (1974) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Scientific Research Institute of ChemistryV.N. Karasin National UniversityKharkivUkraine
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations