Advertisement

Journal of Solution Chemistry

, Volume 36, Issue 11–12, pp 1669–1677 | Cite as

Thermodynamics of the In|In+3 Electrode in HCl + InCl3 Solutions

  • Rabindra N. Roy
  • Lakshmi N. Roy
  • Darin Gregory
  • Kathleen Kuhler
  • Shahaf Ashkenazi
  • Stephanie Kiefer
  • Kenneth S. Pitzer
Special Issue Dedicated to Joseph Antoine Rard

Abstract

Electromotive force measurements have been made using the cell
$$\mbox{In(s)}|\mbox{HCl }(m_{\mathrm{A}}),\mbox{InCl}_{3}(m_{\mathrm{B}}),\mbox{H}_{2}\mbox{O}|\mbox{AgCl, Ag}$$
in the ionic strength range of I=0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol⋅kg−1 at 25 °C. The value of E o, the standard potential of the In/In3+ electrode, has been determined at 25 °C. Our value of E o (−0.3371 V) at 25 °C obtained from our measurements is in good agreement with −0.336 (Hakomori, J. Am. Chem. Soc. 52: 2372–2376, 1930) and −0.3382 V (Covington et al., J. Chem. Soc. 4394–4401, 1963). The activity coefficients of InCl3 as well as Harned interaction coefficients have been determined at 25 °C for each of the experimental ionic strengths at ionic strength fractions of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of HCl. Harned’s rule for the salt is obeyed at I=0.05,0.1 and 0.25 mol⋅kg−1 but the quadratic terms are needed for higher ionic strengths. These data, together with others for the activity coefficient of HCl in the same solutions, have been treated by the ion-interaction (Pitzer, Activity Coefficients in Electrolyte Solutions, CRC Press, 1991) equations in a previous publication.

Keywords

Activity coefficient Emf Harned’s equations Standard potential Indium chloride Mixtures of electrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roy, L.N., Beasley, T.M., Kuhler, K.M., Bice, J.K., Good, W.S., Roy, R.N., Pitzer, K.S.: The system HCl + InCl3 + H2O from 5 to 55 °C: Application of Harned’s rule. J. Solution Chem. 25, 1241–1259 (1996) CrossRefGoogle Scholar
  2. 2.
    Roy, R.N., Vogel, K.M., Good, C.E., Davis, W.B., Roy, L.N., Johnson, D.A., Felmy, A.R., Pitzer, K.S.: Activity coefficients in electrolyte mixtures: HCl + ThCl4 + H2O for 5-55 °C. J. Phys. Chem. 96, 11065–11072 (1992) CrossRefGoogle Scholar
  3. 3.
    Roy, R.N., Moore, C.P., White, M.N., Roy, L.N., Vogel, K.M., Johnson, D.A., Millero, F.J.: Thermodynamic properties of aqueous mixtures of HCl and CoCl2 at different temperatures. Application of Pitzer’s formalism. J. Phys. Chem. 96, 403–407 (1992) CrossRefGoogle Scholar
  4. 4.
    Roy, R.N., Rice, S.A., Vogel, K.M., Roy, L.N., Millero, F.J.: Activity coefficients for HCl + BaCl2 + H2O at different temperatures and effects of higher order electrostatic terms. J. Phys. Chem. 94, 7706–7710 (1990) CrossRefGoogle Scholar
  5. 5.
    Roy, R.N., Roy, L.N., Farwell, G.D., Smith, K.A., Millero, F.J.: Thermodynamics of the unsymmetrical mixed electrolyte HCl-NiCl2. Application of Pitzer’s equations. J. Phys. Chem. 94, 7321–7325 (1990) CrossRefGoogle Scholar
  6. 6.
    Butler, J.N., Roy, R.N.: Activity Coefficients in Electrolyte Solutions, p. 155. CRC Press, Boca Raton (1991) Google Scholar
  7. 7.
    Hakomori, S.: The electrode potential of indium against indium chloride solutions. J. Am. Chem. Soc. 52, 2372–2376 (1930) CrossRefGoogle Scholar
  8. 8.
    Hampson, N.A., Piercy, R.: The potential of the In3+/In electrode. Electroanal. Chem. Interfacial Electrochem. 51, 91–97 (1974) Google Scholar
  9. 9.
    Covington, A.K., Hakeem, M.A., Wynne-Jones, W.F.K.: Standard potential of the In|In3+ electrode, J. Chem. Soc., 4394–4401 (1963) Google Scholar
  10. 10.
    Hattox, E.M., De Vries, T.: The thermodynamics of aqueous indium sulfate solutions. J. Am. Chem. Soc. 58, 2126–2129 (1936) CrossRefGoogle Scholar
  11. 11.
    Roy, R.N., Gibbons, J.J., Ovens, L.K., Bliss, G.A., Hartley, J.J.: Activity coefficients for the system HCl + CaCl2 + H2O at various temperatures: Applications of Pitzer’s equations. J. Chem. Soc. Faraday Trans. I 78, 1405–1422 (1981) CrossRefGoogle Scholar
  12. 12.
    Harned, H.S., Robinson, R.A.: Multicomponent Electrolyte Solutions, p. 60. Pergamon, Oxford (1968) Google Scholar
  13. 13.
    Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton (1991), Chapter 3 Google Scholar
  14. 14.
    Khoo, K.H., Fernando, K.R., Fereday, R.J., Chan, C.-Y.: Pitzer model parameters for sparingly soluble salts from solubility measurements. The systems TlCl + SrCl2 + H2O and TlCl + BaCl2 + H2O at 25 °C. J. Solution Chem. 24, 1039–1048 (1995) CrossRefGoogle Scholar
  15. 15.
    Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2-2 electrolytes. J. Solution Chem. 3, 539–546 (1974) CrossRefGoogle Scholar
  16. 16.
    Davies, C.W.: Ion Association. Butterworths, London (1962), Chapter 10 Google Scholar
  17. 17.
    Pitzer, K.S., Roy, R.N., Wang, P.: Thermodynamics of the system InCl3-HCl-H2O at 25 °C. J. Phys. Chem. 101, 4120–4126 (1997) Google Scholar
  18. 18.
    Harned, H.S., Gary, R.: The activity coefficient of hydrochloric acid in concentrated aqueous higher valence type chloride solutions at 25°. III. The system hydrochloric acid-aluminum chloride. J. Am. Chem. Soc. 77, 4695–4697 (1955) CrossRefGoogle Scholar
  19. 19.
    Khoo, K.H., Lim, T.K., Chan, C.Y.: Activity coefficients in aqueous mixtures of hydrochloric acid and lanthanide chloride at 25 °C. J. Solution Chem. 10, 683–688 (1981) Google Scholar
  20. 20.
    Roy, R.N., Gibbons, J.J., Peiper, J.C., Pitzer, K.S.: Thermodynamics of the unsymmetrical mixed electrolyte HCl-LaCl3. J. Phys. Chem. 87, 2365–2369 (1983) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rabindra N. Roy
    • 1
  • Lakshmi N. Roy
    • 1
  • Darin Gregory
    • 1
  • Kathleen Kuhler
    • 1
  • Shahaf Ashkenazi
    • 1
  • Stephanie Kiefer
    • 1
  • Kenneth S. Pitzer
    • 1
  1. 1.Hoffman Department of ChemistryDrury UniversitySpringfieldUSA

Personalised recommendations