Advertisement

Journal of Solution Chemistry

, Volume 36, Issue 11–12, pp 1679–1726 | Cite as

Thermodynamics of Selected Aqueous Rare-Earth Elements Containing Triflate Salts at T=(288.15, 298.15, 313.15 and 328.15) K and p=0.1 MPa

  • Kristy M. Erickson
  • Andrew W. Hakin
  • Stephanie N. Jones
  • Jin L. Liu
  • Sharmeen N. Zahir
Special Issue Dedicated to Joseph Antoine Rard

Abstract

Aqueous acidified solutions of the rare-earth-element (REE) triflates (Gd(CF3SO3)3(aq), Dy(CF3SO3)3(aq), Nd(CF3SO3)3(aq), Er(CF3SO3)3(aq), Yb(CF3SO3)3(aq) and Y(CF3SO3)3(aq)) have been prepared by the dissolution of the corresponding REE oxides in dilute aqueous trifluoromethanesulfonic acid (triflic acid, CF3SO3H(aq)). Relative densities and relative massic heat capacities have been measured for these systems over the approximate ionic strength range 0.10≤I/(mol⋅kg−1)≤1.35 at T=(288.15, 298.15, 313.15 and 328.15) K and p=0.1 MPa. These measurements were completed using a Sodev O2D vibrating tube densimeter and Picker-flow microcalorimeter, respectively. Relative densities and relative massic heat capacities for aqueous solutions of triflic acid and its sodium salt have also been measured over the concentration range 0.018≤m 2/(mol⋅kg−1)≤0.23 over the same temperature range at p=0.1 MPa.

Young’s rule has been used to calculate apparent molar volumes and apparent molar heat capacities of the aqueous solutions of REE triflate salts from the calculated apparent molar properties of the acidified salt solutions. These properties have been modeled using the Pitzer ion-interaction equations. The apparent molar properties of aqueous triflic acid solutions and aqueous solutions of its sodium salt have also been modeled using the same Pitzer ion-interaction equations.

The apparent molar properties at infinite dilution obtained from our property modeling have been used to calculate single ion volumes and single ion heat capacities for each of the aqueous ions; Gd (aq) 3+ , Dy (aq) 3+ , Nd (aq) 3+ , Er (aq) 3+ , Yb (aq) 3+ , and Y (aq) 3+ . The reported single ion values have been compared with those previously reported in the literature.

Keywords

Rare earth elements Aqueous triflate salts Triflic acid Density Massic heat capacity Apparent molar properties Single ion volumes and heat capacities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sabot, J.-L., Maestro, P.: In: Howe-Grant, M. (ed.) Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn., vol. 14, pp. 1091–1115. Wiley, New York (1995) Google Scholar
  2. 2.
    Encyclopedia of Chemical Technology, 4th edn., Imaging Technology to Lanthanides, vol. 4. Wiley, New York (1995) Google Scholar
  3. 3.
    Hakin, A.W., Lukacs, M.J., Liu, J.L., Erickson, K., Madhavji, A.: The volumetric and thermochemical properties of Y(ClO4)3(aq), Yb(ClO4)3(aq), Dy(ClO4)3(aq), and Sm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. J. Chem. Thermodyn. 35, 775–802 (2003) CrossRefGoogle Scholar
  4. 4.
    Hakin, A.W., Lukacs, M.J., Liu, J.L., Erickson, K.: The volumetric and thermochemical properties of YClq(aq), YbCl3(aq), DyCl3(aq), SmCl3(aq), and GdCl3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. J. Chem. Thermodyn. 35, 1861–1895 (2003) CrossRefGoogle Scholar
  5. 5.
    Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.-V.: Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. J. Chem. Thermodyn. 36, 773–786 (2004) CrossRefGoogle Scholar
  6. 6.
    Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.-V., Rard, J.A.: Apparent molar volumes and apparent molar heat capacities of Pr(NO3)3(aq), Gd(NO3)3(aq), Ho(NO3)3(aq), and Y(NO3)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. J. Chem. Thermodyn. 37, 153–167 (2005) CrossRefGoogle Scholar
  7. 7.
    Marriott, R.M., Hakin, A.W., Rard, J.A.: Apparent molar heat capacities and apparent molar volumes of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) at T=298.15 K and p=0.1 MPa. J. Chem. Thermodyn. 33, 643–687 (2001) CrossRefGoogle Scholar
  8. 8.
    Hakin, A.W., Lukacs, M.J., Liu, J.L.: Densities and apparent molar volumes of HClO4(aq) and Yb(ClO4)3(aq) at elevated temperatures and pressures. J. Chem. Thermodyn. 36, 759–772 (2004) CrossRefGoogle Scholar
  9. 9.
    Millero, F.J.: Stability constant for the formation of rare-earth inorganic complexes as a function of ionic strength. Geochem. Cosmochim. Acta 56, 3123–3132 (1992) CrossRefGoogle Scholar
  10. 10.
    Rard, J.A., Shiers, L.E., Heiser, D.J., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 3. The rare earth nitrates. J. Chem. Eng. Data 22, 227–247 (1977) Google Scholar
  11. 11.
    Rard, J.A., Miller, D.G., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. Lanthanum nitrate, praseodymium nitrate, and neodymium nitrate. J. Chem. Eng. Data 24, 348–354 (1979) CrossRefGoogle Scholar
  12. 12.
    Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 5. Dysprosium trinitrate, holmium trinitrate, and lutetium trinitrate. J. Chem. Eng. Data 26, 391–395 (1981) CrossRefGoogle Scholar
  13. 13.
    Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 6. Europium trinitrate, yttrium trinitrate, and yttrium trichloride. J. Chem. Eng. Data 27, 454–461 (1982) CrossRefGoogle Scholar
  14. 14.
    Bonal, C., Morel, J.-P., Morel-Desrosiers, N.: Interactions between lanthanide cations and nitrate anion in water part 2. Microcalorimetric determination of the Gibbs energies, enthalpies, and entropies of complexation of Y3+ and trivalent lanthanide cations. J. Chem. Soc. Faraday Trans. 94, 1431–1436 (1998) CrossRefGoogle Scholar
  15. 15.
    Xiao, C., Tremaine, P.R.: Apparent molar heat capacities and volumes of LaCl3(aq), La(ClO4)3(aq), and Gd(ClO4)3(aq) between temperatures 283 K and 338 K. J. Chem. Thermodyn. 28, 43–66 (1996) CrossRefGoogle Scholar
  16. 16.
    Xiao, C., Tremaine, P.R.: The thermodynamics of aqueous trivalent rare earth elements. Apparent molar heat capacities and volumes of Nd(ClO4)3(aq), Eu(ClO4)3(aq), Er(ClO4)3(aq), and Yb(ClO4)3(aq) from the temperatures 283 K to 328 K. J. Chem. Thermodyn. 29, 827–852 (1997) CrossRefGoogle Scholar
  17. 17.
    Spedding, F.H., Jones, K.C.: Heat capacities of aqueous rare earth chloride solutions at 25 °C. J. Phys. Chem. 70, 2450–2455 (1966) CrossRefGoogle Scholar
  18. 18.
    Spedding, F.H., Rikal, M.J., Ayers, B.O.: Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at 25 °C. J. Phys. Chem. 70, 2440–2449 (1966) CrossRefGoogle Scholar
  19. 19.
    Spedding, F.H., Shiers, L.E., Brown, M.A., Derer, J.L., Swanson, D.L., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 °C. II. Rare earth perchlorates. J. Chem. Eng. Data 20, 81–88 (1975) CrossRefGoogle Scholar
  20. 20.
    Spedding, F.H., Shiers, L.E., Brown, M.A., Baker, J.L., Guitierrez, L., McPowell, L.S., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 °C. III. Rare earth nitrates. J. Phys. Chem. 79, 1087–1096 (1975) CrossRefGoogle Scholar
  21. 21.
    Spedding, F.H., Baker, J.L., Walters, J.P.: Apparent and partial molal heat capacities of aqueous rare earth perchlorate solutions at 25 °C. J. Chem. Eng. Data 20, 189–195 (1975) CrossRefGoogle Scholar
  22. 22.
    Spedding, F.H., Walters, J.P., Baker, J.L.: Apparent and partial molar heat capacities of some aqueous rare earth chloride solutions at 25 °C. J. Chem. Eng. Data 20, 438–443 (1975) CrossRefGoogle Scholar
  23. 23.
    Spedding, F.H., Baker, J.L., Walters, J.P.: Apparent and partial molal heat capacities of aqueous rare earth nitrate solutions at 25 °C. J. Am. Chem. Soc. 24, 298–305 (1979) Google Scholar
  24. 24.
    Xiao, C., Tremaine, P.R.: Apparent molar volumes of aqueous solutions of sodium trifluoromethane sulfonate and trifluoromethanesulfonic acid from 283 K to 600 K and pressures up to 20 MPa. J. Solution Chem. 26, 277–294 (1997) Google Scholar
  25. 25.
    Xiao, C., Pham, T., Xie, W., Tremaine, P.R.: Apparent molar volumes and heat capacities of aqueous trifluoromethanesulfonic acid and its sodium salt from 283 to 328 K. J. Solution Chem. 30, 201–211 (2001) CrossRefGoogle Scholar
  26. 26.
    Skoog, D.A., West, D.M.: Fundamentals of Analytical Chemistry, 4th edn., p. 734. Saunders, Philadelphia (1982) Google Scholar
  27. 27.
    Skoog, D.A., West, D.M., Holler, F.J., Crouch, S.R.: Analytical Chemistry: An Introduction, 7th edn., p. 742. Saunders, Philadelphia (2000) Google Scholar
  28. 28.
    Desnoyers, J.E., Visser, C., Perron, G., Picker, P.: Reexamination of the heat capacities obtained by Flow Calorimetry. Recommendation for the use of a chemical standard. J. Solution Chem. 5, 605–616 (1976) CrossRefGoogle Scholar
  29. 29.
    Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 56–69 (1967) CrossRefGoogle Scholar
  30. 30.
    Handbook of Chemistry and Physics, 41st edn., p. 2132. Chemical Rubber, Cleveland (1959–1960) Google Scholar
  31. 31.
    Archer, D.G., Wang, P.: The dielectric constant of water and Debye-Huckel limiting slope. J. Phys. Chem. Ref. Data 19, 371–411 (1990) CrossRefGoogle Scholar
  32. 32.
    Hill, P.G.J.: A unified fundamental equation for the thermodynamic properties of H2O. Phys. Chem. Ref. Data 19, 1233–1274 (1990) CrossRefGoogle Scholar
  33. 33.
    Pytkowicz, R.M.: Activity Coefficients in Electrolyte Solutions, vol. 1. CRC Press, Boca Raton (1979) Google Scholar
  34. 34.
    Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II: Debye-Huckel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261 (1974) CrossRefGoogle Scholar
  35. 35.
    Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes and high pressures and temperatures I: Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198 (1974) CrossRefGoogle Scholar
  36. 36.
    Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high-pressure and temperatures-revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988) CrossRefGoogle Scholar
  37. 37.
    Young, T.F., Smith, M.B.: Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J. Phys. Chem. 58, 716–724 (1954) CrossRefGoogle Scholar
  38. 38.
    Xiao, C., Tremaine, P.R.: Apparent molar volumes of La(CF3SO3)3(aq) and Gd(CF3SO3)3(aq) at 278 K, 298 K, and 318 K at pressures to 30.0 MPa. J. Chem. Eng. Data 41, 1075–10787 (1996) CrossRefGoogle Scholar
  39. 39.
    Stimson, H.F.: Heat units and temperature scales for calorimetry. J. Am. Phys. 23, 614–622 (1955) CrossRefGoogle Scholar
  40. 40.
    Hovey, J.K.: Thermodynamics of aqueous solutions, Ph.D. thesis, University of Alberta (1988) Google Scholar
  41. 41.
    Hovey, J.K., Hepler, L.G., Tremaine, P.R.: Thermodynamics of aqueous aluminate ion: standard partial molar heat capacities and volumes of Al(OH)4(aq) from 10 to 55 °C. J. Phys. Chem. 92, 1323–1332 (1988) CrossRefGoogle Scholar
  42. 42.
    Wood, S.A.: The aqueous geochemistry of the rare earths and yttrium 1. Review of available low temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186 (1990) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryUniversity of LethbridgeLethbridgeCanada

Personalised recommendations