Advertisement

Journal of Solution Chemistry

, Volume 36, Issue 11–12, pp 1569–1584 | Cite as

Isopiestic Osmotic Coefficients of Tetra-n-methylammonium Chloride with Guanidinium Salts at 298.15 K

  • Anil Kumar
Special Issue Dedicated to Joseph Antoine Rard
  • 96 Downloads

Abstract

Isopiestic osmotic coefficients are presented for aqueous mixtures of tetra-n-methylammonium chloride, (CH3)4NCl, with guanidinium salts such as GnCl, CH3COOGn, GnNO3, GnClO4 and Gn2SO4 at 298.15 K up to an ionic strength of 2 mol⋅kg−1. The osmotic coefficients are analyzed in terms of the Scatchard-Rush-Johnson equations. The activity coefficients of each electrolyte in the mixtures were calculated and fitted by the Harned-type equations. The molar excess Gibbs energy of mixing, Δm G E, of the mixtures were analyzed with Friedman’s equations.

Keywords

Isopiestic method Osmotic coefficients Scatchard-Rush-Johnson equations Aqueous solutions Tetramethylammonium salts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumar, A.: Ionic interactions in aqueous mixtures of NaCl with guanidinium chloride: Osmotic coefficients, densities, speeds of sounds, surface tension, viscosities and the derived properties. J. Phys. Chem. B 104, 9505–9512 (2000) CrossRefGoogle Scholar
  2. 2.
    Kumar, A.: The mixing of K+, (nBu4)N+, Mg2+ and Ca2+ with guanidinium chloride in water: Ionic interactions from a thermodynamic study. J. Phys. Chem. B 105, 9828–9833 (2001) CrossRefGoogle Scholar
  3. 3.
    Kumar, A.: Ionic interactions from the mixing of NaCl with the acetate, nitrate, perchlorate and sulphate salts of guanidinium in water. J. Phys. Chem. B 107, 2808–2814 (2003) CrossRefGoogle Scholar
  4. 4.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973) CrossRefGoogle Scholar
  5. 5.
    Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974) CrossRefGoogle Scholar
  6. 6.
    Pitzer, K.S.: Ion interaction approach: Theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC, Boca Raton (1991), Chap. 3 Google Scholar
  7. 7.
    Scatchard, G., Rush, R.M., Johnson, J.S.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25 °C. III. Treatment with the ions as components. J. Phys. Chem. 74, 3786–3796 (1970) CrossRefGoogle Scholar
  8. 8.
    Kumar, A.: Reassessment of the binary, ternary and quaternary interactions in mixed electrolytes from thermodynamic quantities: The systems with uncommon ions containing hydrophobic character. J. Phys. Chem. B 109, 11743–11752 (2005) CrossRefGoogle Scholar
  9. 9.
    Wen, Y., Miyajima, K., Otsuka, A.: Free energy changes on mixing solutions of alkali halides and symmetrical tetraalkylammonium halides. J. Phys. Chem. 75, 2148–2157 (1971) CrossRefGoogle Scholar
  10. 10.
    For a summary with original citations see Wen, Y.: In: Horne, R.A. (ed.) Water and Aqueous Solutions. Wiley, New York (1972), Chap. 15, p. 613 Google Scholar
  11. 11.
    Amdur, S., Padova, J., Saad, D., Marcus, Y.: The thermodynamics of mixed electrolyte solutions III. The aqueous system (C3H7)4NCl + NaCl at 298.15 K. J. Chem. Thermodyn. 8, 77–82 (1976) Google Scholar
  12. 12.
    Wigent, R.J., Leifer, L.: Determination of osmotic and activity coefficients in mixed electrolyte systems containing clathrate-forming salts. J. Phys. Chem. 88, 4420–4426 (1984) CrossRefGoogle Scholar
  13. 13.
    Wu, Y.C., Rush, R.M., Scatchard, G.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25 °C. I. Isopiestic measurements on the four systems with common ions. J. Phys. Chem. 72, 4048–4053 (1968) CrossRefGoogle Scholar
  14. 14.
    Wu, Y.C., Rush, R.M., Scatchard, G.: Osmotic and activity coefficients for binary mixtures of sodium chloride, sodium sulfate, magnesium sulfate, and magnesium chloride in water at 25 °C. II. Isopiestic and electromotive force measurements on the two systems without common ions. J. Phys. Chem. 73, 2047–2053 (1969) CrossRefGoogle Scholar
  15. 15.
    Kuhnel, V., Kaatze, U.: Uncommon ultrasonic absorption spectra of tetraalkylammonium bromides in aqueous solution. J. Phys. Chem. 100, 19747–19757 (1996) CrossRefGoogle Scholar
  16. 16.
    Lileev, A.S., Lyshchenko, A.K., Yastremskii, P.: Dielectric properties of guanidinium chloride aqueous solutions. Russ. J. Phys. Chem. 59, 978–982 (1985) (in English) Google Scholar
  17. 17.
    von Hippel, P.H., Schleich, T.: Ion effects on the solution structure of biological macromolecules. Acc. Chem. Res. 2, 257–265 (1969) and references cited therein CrossRefGoogle Scholar
  18. 18.
    Kumar, A.: Salt effects on Diels-Alder reaction kinetics. Chem. Rev. 101, 1–19 (2001) CrossRefGoogle Scholar
  19. 19.
    Bonner, O.D.: The osmotic and activity coefficients of some guanidinium salts at 298.15 K. J. Chem. Thermodyn. 8, 1167–1172 (1976) Google Scholar
  20. 20.
    Shrier, M.Y., Shrier, E.E.: Osmotic and activity coefficients of aqueous guanidine hydrochloride solutions at 25 °C. J. Chem. Eng. Data 22, 73–74 (1977) CrossRefGoogle Scholar
  21. 21.
    Macaskill, J.B., Robinson, R.A., Bates, R.G.: Osmotic coefficients and activity coefficients of guanidinium chloride in concentrated aqueous solutions at 25 °C. J. Chem. Eng. Data 22, 411–412 (1977) CrossRefGoogle Scholar
  22. 22.
    Makhatadze, G.I., Fernendez, J., Lilley, T.H., Privalov, P.L.: Thermodynamics of aqueous guanidinium hydrochloride solutions in the temperature range from 283.15 to 313.15 K. J. Chem. Eng. Data 38, 83–87 (1993) CrossRefGoogle Scholar
  23. 23.
    Nozaki, Y.: The preparation of guanidine hydrochloride. Methods Enzymol. 26, 43–49 (1972) CrossRefGoogle Scholar
  24. 24.
    Rard, J.A., Habenschuss, A., Spedding, F.H.: A review of the osmotic coefficients of aqueous sulfuric acid at 25 °C. J. Chem. Eng. Data 21, 374–379 (1976) CrossRefGoogle Scholar
  25. 25.
    Hamer, W.J., Wu, Y.-C.: Osmotic coefficients and mean activity coefficients uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972) CrossRefGoogle Scholar
  26. 26.
    Rard, J.A., Platford, R.F.: In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC, Boca Raton (1991), Chap. 5 Google Scholar
  27. 27.
    Lindenbaum, S., Boyd, G.E.: Osmotic and activity coefficients for the symmetrical tetraalkylammonium halides in aqueous solution at 25 °C. J. Phys. Chem. 68, 911–917 (1964) CrossRefGoogle Scholar
  28. 28.
    Kumar, A.: Aqueous guanidinium salts. Part II. Isopiestic osmotic coefficients of guanidinium sulphate and viscosity and surface tension of guanidinium chloride, bromide, acetate, perchlorate and sulphate solutions at 298.15 K. Fluid Phase Equilib. 180, 195–204 (2001) CrossRefGoogle Scholar
  29. 29.
    Leifer, L., Wigent, R.W.: Determination of the contribution of pair, triplet and higher-order multiplet interactions to the excess free energy of mixing in mixed electrolyte solutions. J. Phys. Chem. 89, 244–245 (1985) CrossRefGoogle Scholar
  30. 30.
    For applications see: Fox, D.M., Leifer, L.: Thermodynamics studies of ternary systems. I LiCl- (n-Bu)4NCl-H2O at 25 °C. J. Phys. Chem. B 104, 1058–1068 (2000), and references cited therein CrossRefGoogle Scholar
  31. 31.
    Fox, D.M., Leifer, L.: Thermodynamic treatment of complex multicomponent electrolyte solutions. Fluid Phase Equilib. 213, 1–17 (2003) CrossRefGoogle Scholar
  32. 32.
    Friedman, H.L.: Mayer’s ionic solution theory applied to electrolyte mixtures. J. Chem. Phys. 32, 1134–1149 (1960) CrossRefGoogle Scholar
  33. 33.
    Friedman, H.L.: Thermodynamic excess functions for electrolyte solutions. J. Chem. Phys. 32, 1351–1362 (1960) CrossRefGoogle Scholar
  34. 34.
    For a complete account see: Friedman, H.L.: Ionic Solution Theory. Interscience, New York (1962) Google Scholar
  35. 35.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions. Reinhold, New York (1950) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Physical Chemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations