Journal of Solution Chemistry

, Volume 36, Issue 10, pp 1231–1242 | Cite as

An Investigation on the Molecular Dynamics of Binary Mixtures of Anisole with Acetic and Propionic Acids

  • G. Parthipan
  • T. Thenappan
Original Paper


Temperature dependent dielectric studies were carried out from 303 to 323 K for mixtures of anisole with acetic acid and with propionic acid, in order to investigate the molecular dynamics of these molecules. The low-frequency molecular dynamics of these molecules have been studied by computing some dielectric parameters such as the Kirkwood correlation factor, Bruggeman parameter, excess permittivity and excess Helmholtz energy. The observed Kirkwood effective correlation factor for both binary mixtures at all concentrations and temperatures were found to be less than unity. Negative values of the Bruggeman parameter were obtained for mixtures of anisole with acetic acid whereas positive values were obtained for the mixtures of anisole with propionic acid. The formation of β-multimers, with anti-parallel dipolar orientations, was identified in the above binary mixtures. This investigation showed that changes of temperature did not produce any significant structural changes over the studied temperature interval.


Permittivity Kirkwood correlation factor Excess permittivity Bruggeman parameter Excess Helmholtz energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya, S.: Molecular interaction in a polar-polar system—di-isobutyl ketone (DIBK) and primary aliphatic alcohols—using dielectric measurement. J. Mol. Liq. 124, 68–71 (2006) CrossRefGoogle Scholar
  2. 2.
    Parthipan, G., Thenappan, T.: Molecular interaction of binary mixture of anisole with 2-ethyl-1-hexanol and decyl alcohol. J. Mol. Liq. 133, 1–6 (2007) CrossRefGoogle Scholar
  3. 3.
    Verstakov, E.S., Goncharov, V.V., Kessier, Y.M., Tarasov, A.P.: Dielectric properties of the system formamide–acetic acid. J. Struct. Chem. 23, 629–632 (1983) CrossRefGoogle Scholar
  4. 4.
    Thenappan, T., Prabakar Devaraj, A.: Dielectric studies on binary mixtures of propionic acid with esters. J. Mol. Liq. 123, 72–79 (2006) CrossRefGoogle Scholar
  5. 5.
    Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents: Physical Properties and Methods of Purification, vol. 2, 4th edn. Wiley-Interscience, New York (1986) Google Scholar
  6. 6.
    Thenappan, T., Sankar, U.: Studies on fluid structure and molecular interactions of amides. Indian J. Pure Appl. Phys. 42, 435–439 (2004) Google Scholar
  7. 7.
    CRC Handbook of Chemistry and Physics, 78th edn. CRC, Boca Raton (1997–1998) Google Scholar
  8. 8.
    Rana, V.A., Vyas, A.D., Mehrotra, S.C.: Dielectric relaxation study of mixtures of 1-propanol with aniline, 2-chloroaniline and 3-chloroanilne at different temperatures using time domain reflectometry. J. Mol. Liq. 102, 379–391 (2002) CrossRefGoogle Scholar
  9. 9.
    Frohilich, H.: Theory of Dielectrics. Oxford University Press, London (1949) Google Scholar
  10. 10.
    Pawar, V.P., Patil, A.R., Mehrotra, S.C.: Temperature-dependent dielectric relaxation study of chlorobenzene with n-methylforamide from 10 MHz to GHz. J. Mol. Liq. 121, 88–93 (2005) CrossRefGoogle Scholar
  11. 11.
    Pawar, V.P., Mehrotra, S.C.: Dielectric relaxation study of liquids having a chloro group with associated liquids I. Chlorobenzene with methanol, ethanol, and 1-propanol. J. Solution Chem. 31, 559–576 (2002) CrossRefGoogle Scholar
  12. 12.
    Kumbharkhane, A.C., Puranik, S.M., Mehrotra, S.C.: Dielectric relaxation study and structural properties of 2-nitro acetophone–ethanol solutions from 10 MHz to 10 GHz. J. Mol. Liq. 51, 307–319 (1992) CrossRefGoogle Scholar
  13. 13.
    Balamurugan, D., Kumar, S., Krishnan, S.: Dielectric relaxation studies of higher order alcohol complexes with amines using time domain reflectometry. J. Mol. Liq. 122, 11–14 (2005) CrossRefGoogle Scholar
  14. 14.
    Puranik, S.M., Kumbharkhanc, A.C., Mehrotra, S.C.: The static permittivity of binary mixtures using an improved Bruggeman model. J. Mol. Liq. 59, 173–177 (1994) CrossRefGoogle Scholar
  15. 15.
    Kumbharkhanc, A.C., Puranik, S.M., Mehrotra, S.C.: Dielectric relaxation studies of aqueous N,N-dimethyl formamide using a picosecond time domain technique. J. Solution Chem. 22, 219–230 (1993) CrossRefGoogle Scholar
  16. 16.
    Chaudhari, A., Ahire, S., Mehrotra, S.C.: Dielectric relaxation study of pyridine-sulfolane mixtures using time domain reflectometry. J. Mol. Liq. 94, 17–25 (2001) CrossRefGoogle Scholar
  17. 17.
    Thenappan, T., Sankar, U.: Dielectric studies of hydrogen bonded complexes of alcohols with N,N-dimethyl formamide. J. Mol. Liq. 126, 38–42 (2006) CrossRefGoogle Scholar
  18. 18.
    Gupta, K.K., Basal, A.K., Singh, P.J., Sharma, K.S.: Study of molecular interaction in binary mixtures of acetophone derivative and cyclohexyl amine. Indian J. Phys. 79, 147–152 (2005) Google Scholar
  19. 19.
    Varadarajan, R., Rajagopal, A.: Dipolar excess thermodynamic parameters and Kirkwood-Frohlich correlation factor of monoalcohols. Indian J. Pure Appl. Phys. 36, 113–118 (1998) Google Scholar
  20. 20.
    Acharya, S., Dash, S.K., Swain, B.B.: Dielectric investigation in binary mixtures involving a nuclear extractant di-isobutyl ketone (DIBK) and nonpolar solvents. Indian J. Phys. 72B, 239–247 (1998) Google Scholar
  21. 21.
    Garabadu, K., Swain, B.B.: Dielectric response of some long-chain alcohols in non-polar solvents. Indian J. Pure Appl. Phys. 31, 741–743 (1993) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysicsAlagappa UniversityKaraikudiIndia

Personalised recommendations