Advertisement

Journal of Solution Chemistry

, Volume 36, Issue 8, pp 1037–1046 | Cite as

A Determination of Standard Potentials and Related Primary pH Standards in the 50 Mass Percent (N-Methyl-2-Pyrrolidinone + Water) Mixture at Various Temperatures

  • Luigi Falciola
  • Patrizia R. Mussini
  • Torquato Mussini
  • Manuela Rossi
Original Paper

Abstract

Following the IUPAC-endorsed procedure, the primary pH standards offered by the equimolal phosphate buffer (Na2HPO4 (0.01 mol⋅kg−1) + KH2PO4 (0.01 mol⋅kg−1)) in the (N-methyl-2-pyrrolidinone + water) solvent mixture of 50 mass percent composition at various temperatures have been determined from potential difference measurements with the reversible Harned cell. Since the essential prerequisite of the above procedure is the knowledge of the (hitherto unknown) standard potential difference of Harned’s cell, a parallel supplementary series of potential difference measurements has been carried out with the reversible cell, Pt|H2|HCl(m)|AgCl|Ag|Pt according to the classical thermodynamic procedure. The problem of comparability of the pH scale in the (N-methyl-2-pyrrolidinone + water) solvent with that in the pure water solvent is duly discussed in terms of primary medium effects.

Keywords

(N-methyl-2-pyrrolidinone + water) mixtures Primary pH standards Ag–AgCl electrode Electrode potentials HCl activity coefficients pH scales comparison Primary medium effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Covington, A.K., Dickinson, T.: In: Covington, A.K., Dickinson, T. (eds.) Physical Chemistry of Organic Solvent Systems, p. 16. Plenum, London (1972) Google Scholar
  2. 2.
    Sears, P.G., Fortune, W.H., Blumenshine, R.L.: Dipole moment of sulfamic acid and viscosities of its solutions in selected nonaqueous media. J. Chem. Eng. Data 11, 406–409 (1966) CrossRefGoogle Scholar
  3. 3.
    Langan, J.R., Salmon, G.A.: Physical properties of N-methylpyrrolidinone as functions of temperature. J. Chem. Eng. Data 32, 420–422 (1987) CrossRefGoogle Scholar
  4. 4.
    Virtanen, P.O.I.: N-methyl-2-pyrrolidinone as a medium for chemical reactions. V. Dielectric constants of N-methyl-2-pyrrolidinone–water mixtures. Suomen Kemistilehti B 40, 313–316 (1967) Google Scholar
  5. 5.
    Bréant, M.: Chemical and electrochemical properties in solvents. VII. Chemical and electrochemical properties in N-methylpyrrolidone. Bull. Soc. Chim. France 2, 725–728 (1971) Google Scholar
  6. 6.
    Riddick, J.A., Bunger, W.B.: Organic Solvents. In: Weissberger, A. (ed.) Techniques of Chemistry, 3rd edn., rev. by Riddick, J.A., Toops, E.E., vol. 2, p. 454. Wiley-Interscience, New York (1970) Google Scholar
  7. 7.
    Fischer, E.: The electric moment of 1-methyl-2-pyrrolidinone. J. Chem. Soc., 1382–1383 (1955) Google Scholar
  8. 8.
    Tafel, J., Wassmuth, O.: Pyrrolidone. Ber. Deutsche Chem. Gesell. 40, 2831–2842 (1907) Google Scholar
  9. 9.
    Bates, R.G.: Determination of pH—Theory and Practice, 2nd edn., pp. 227–228. Wiley, New York (1973) Google Scholar
  10. 10.
    Mussini, T., Covington, A.K., Longhi, P., Rondinini, S.: Criteria for standardization of pH measurements in organic solvents and water + organic solvents mixtures of moderate to high permittivities. Pure Appl. Chem. 57, 865–876 (1985) Google Scholar
  11. 11.
    Izutsu, K.. In: Electrochemistry in Nonaqueous Solutions, pp. 181–183. Wiley-VCH, Weinheim, Germany (2002), and literature cited therein Google Scholar
  12. 12.
    Bréant, M., Auroux, A., Lavergne, M.: Spectrophotometric determination of the acid portion of the pH scale in N-methylpyrrolidinone and dimethylacetamide. Anal. Chim. Acta 83, 49–57 (1976), and literature cited therein CrossRefGoogle Scholar
  13. 13.
    Buck, R.P., Rondinini, S., Covington, A.K., Baucke, F.G.K., Brett, C.M.A., Camoes, M.F., Milton, M.J.T., Mussini, T., Naumann, R., Pratt, K.W., Spitzer, P., Wilson, G.S.: The measurement of pH—definitions, standards and procedures. Pure Appl. Chem. 74, 2169–2200 (2002) Google Scholar
  14. 14.
    Falciola, L., Mussini, P.R., Mussini, T.: Problems of electrochemical controls of oxidation-reduction systems in aqueous-organic and nonaqueous media. The rH index with establishment of the relevant scales and standards. Coll. Czech. Chem. Comm. 68, 1605–1620 (2003) CrossRefGoogle Scholar
  15. 15.
    Paabo, M., Robinson, R.A., Bates, R.G.: Reference buffer solutions for pH measurements in 50% methanol. Dissociation constants of acetic acid and dihydrogen phosphate ion from 10 to 40°. J. Am. Chem. Soc. 87, 415–418 (1965) CrossRefGoogle Scholar
  16. 16.
    Hitchcock, D.I.: The extrapolation of electromotive force measurements to unit ionic activity. J. Am. Chem. Soc. 50, 2076–2079 (1928) CrossRefGoogle Scholar
  17. 17.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold, New York (1958), p. 431 Google Scholar
  18. 18.
    Owen, B.B.: Direct measurement of the primary, secondary and total medium effects of acetic acid. J. Am. Chem. Soc. 54, 1758–1769 (1932) CrossRefGoogle Scholar
  19. 19.
    Marcus, Y.: Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: Part 1—Gibbs free energies of transfer to nonaqueous solvents. Pure Appl. Chem. 55, 977–1021 (1983) Google Scholar
  20. 20.
    Ives, D.J.G., Janz, G.J.. In: Reference Electrodes—Theory and Practice, pp. 203–207. Academic, New York (1961) Google Scholar
  21. 21.
    Falciola, L., Mussini, P.R., Mussini, T., Pelle, P.: Determination of primary and secondary standards and characterization of appropriate salt bridges for pH measurements in formamide. Anal. Chem. 76, 528–535 (2004), and literature cited therein CrossRefGoogle Scholar
  22. 22.
    Bates, R.G., Bower, V.E.: Standard potential of the silver–silver chloride electrode from 0° to 95° and the thermodynamic properties of dilute hydrochloric acid solutions. J. Res. Nat. Bur. Standards 53, 282–290 (1954) Google Scholar
  23. 23.
    Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1099 (1972) CrossRefGoogle Scholar
  24. 24.
    Bates, R.G., Guggenheim, E.A.: Report on the standardization of pH and related terminology. Pure Appl. Chem. 1, 163–168 (1960) CrossRefGoogle Scholar
  25. 25.
    Robinson, R.A., Stokes, H.R.: Electrolyte Solutions, 2nd rev. edn., p. 457. Butterworths, London (1965) Google Scholar
  26. 26.
    Virtanen, P.O.I., Korpela, J.: N-methyl-2-pyrrolidinone as a medium for chemical reactions. Part III. Densities, viscosities and refractive indexes of N-methyl-2-pyrrolidinone–water mixtures. Suomen Kemistilehti B 40, 99–103 (1967) Google Scholar
  27. 27.
    Garcia, B., Alcalde, R., Leal, J.M., Matos, J.S.: Solute–solvent interactions in amide–water mixed solvents. J. Phys. Chem. B 101, 7991–7997 (1997) CrossRefGoogle Scholar
  28. 28.
    King, E.J.: in Ref. [1], pp. 338–343 Google Scholar
  29. 29.
    Ref. [9], pp. 211–215 Google Scholar
  30. 30.
    Coetzee, J.F., Campion, J.J.: Solute–solvent interactions. II. Relative activities of anions in acetonitrile and water. J. Am. Chem. Soc. 89, 2517–2521 (1967) CrossRefGoogle Scholar
  31. 31.
    Mussini, P.R., Mussini, T., Rondinini, S.: Reference value standards for pH measurements in D2O and aqueous–organic solvent mixtures: New accessions and assessments. Pure Appl. Chem. 69, 1007–1014 (1997) Google Scholar
  32. 32.
    Butler, J.N.: In: Delahay, P., Tobias, C.W. (eds.) Advances in Electrochemistry and Electrochemical Engineering. Electrochemistry, vol. 7, pp. 77–175. Wiley-Interscience, New York (1970), Chapter 8 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Luigi Falciola
    • 1
  • Patrizia R. Mussini
    • 1
  • Torquato Mussini
    • 1
  • Manuela Rossi
    • 1
  1. 1.Department of Physical Chemistry and ElectrochemistryUniversity of MilanoMilanItaly

Personalised recommendations