Journal of Solution Chemistry

, Volume 36, Issue 1, pp 97–105 | Cite as

Effect of the Type of Glycosidic Linkage on the Selective Interactions of Maltose and Cellobiose with Some Crown Ethers in Dilute Aqueous Solutions

  • Elena V. Parfenyuk
  • N. Sh. Lebedeva
Original Paper


Titration calorimetric and densimetric measurements have been applied to study the selective interactions of two disaccharides composed of two glucose units, maltose and cellobiose, with 15-crown-5 and 18-crown-6 in dilute aqueous solutions. Maltose and cellobiose form thermodynamically stable complexes with different stoichiometries with 18-crown-6 but not with 15-crown-5. The obtained results are explained by the different states of the disaccharides in aqueous solution due to effect of the type of linkage between glucose units


Disaccharides Crown ethers Aqueous solution Complex formation Type of linkage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laine, R.A.: Glycosciences: Status and Perspectives. Gabius, H.-J. and Gabius, S. (eds.) Chapman & Hall, Weinheim-London (1997), pp. 1–14Google Scholar
  2. 2.
    Robertson, A., Shinkai, S.: Cooperative binding in selective sensors, catalysts and actuators. Coord. Chem. Rev. 205, 157–199 (2000)CrossRefGoogle Scholar
  3. 3.
    Rhalou, T., Ferhat, M., Frouji, M.A., Langevin, D., Métayer, M., Verchère, J.-F.: Molecular recognition of carbohydrates by a resorcinarene. Selective transport of alditols through a supported liquid membrane. Carbohydr. Res. 329, 409–422 (2000)CrossRefGoogle Scholar
  4. 4.
    Davidova, O.I., Lebedeva, N.Sh., Parfenyuk, E.V.: Calorimetric study of binding of some dusaccharides with crown ethers. Thermochim. Acta 421, 31–33 (2004)CrossRefGoogle Scholar
  5. 5.
    Volkova, N.L., Parfenyuk, E.V.: Selective interactions of 18-crown-6 with D-glucose and D-galactose in aqueous solutions: Titration calorimetry, densimetry, viscosimetry. Thermochim. Acta 435, 108–112 (2005)CrossRefGoogle Scholar
  6. 6.
    Volkova, N.L., Lebedeva, N.Sh., Parfenyuk, E.V.: Complexation of D-xylose and L-arabinose with 18-crown-6 in aqueous solutions: Calorimetric, densimetric, and viscosimetric studies. Russ. J. Coord. Chem. 31, 899–903 (2005)CrossRefGoogle Scholar
  7. 7.
    Volkova, N.L. Parfenyuk, E.V.: Parameters of complex formation in triple solutions D-glucose or D-galactose -15-crown-5 – water. Russ. J. Phys. Chem. (2006), in press.Google Scholar
  8. 8.
    Lebedeva, N.Sh., Mikhailovskii, K.V., V’ugin, A.I.: Differential automatic titration calorimeter. Russ. J. Phys. Chem. 75, 1031–1033 (2001)Google Scholar
  9. 9.
    Abrosimov V.K.: Non-extrapolated method of determination of partial molar volumes and isentropic compressibilities at infinite dilution. Russ. J. Phys. Chem. 62, 1913–1916 (1988) (in Russian)Google Scholar
  10. 10.
    Hiraoka, M.: Crown Compounds. Elsevier Science Publishers Company, Amsterdam (1982)Google Scholar
  11. 11.
    Fukahara, K., Tachikake, M., Matsumoto, S.: Raman spectroscopic study of the hydrates of 18-crown-6. J. Phys. Chem. 99, 8617–8623 (1995)CrossRefGoogle Scholar
  12. 12.
    Fenrau-Dupont, J., Declercq, J.P., Germain, G., Meersche, M.V.: Complexe 1:1 pentaoxa-1,4,7,10,13-cyclopentadécane-bromure cuire (II) hydrate. Acta Crystallogr. B35, 1215–1217 (1979)CrossRefGoogle Scholar
  13. 13.
    Dorman, D.E., Roberts, J.E.: Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of some common oligosaccharides. J. Am. Chem. Soc. 93, 4463–4472 (1971)CrossRefGoogle Scholar
  14. 14.
    Almond, A.: Towards understanding the interactions between oligosaccharide and water molecules. Carbohydr. Res. 340, 907–920 (2005)CrossRefGoogle Scholar
  15. 15.
    Stevens, E.S., Sathyanarayana, B.K.: Potential energy surfaces of cellobiose and maltose in aqueous solution: A new treatment of disaccharide optical rotation. J. Am. Chem. Soc. 111, 4149–4154 (1989)CrossRefGoogle Scholar
  16. 16.
    Brady, J. W., Schmidt, R.K.: The role of hydrogen bonding in carbohydrates: Molecular dynamics simulations of maltose in aqueous solution. J. Phys. Chem. 97, 958–966 (1993)CrossRefGoogle Scholar
  17. 17.
    Kačurϡkovϡ, M., Mathlouthi, M.: FTIR and laser–Raman spectra of oligosaccharides in water: Characterization of the glycosidic bond. Carbohydr. Res. 284, 145–157 (1996)CrossRefGoogle Scholar
  18. 18.
    Bock, K.: Carbohydrate-protein interactions: Substrate specificity of enzymes used in the degradation of oligosaccharides related to starch and cellulose. Pure and Appl. Chem. 59, 1447–1456 (1987)Google Scholar
  19. 19.
    Storts, C.A., Cerezo, A.S.: Depicting the MM3 potential energy surfaces of trisaccharides by single contour maps: Application to β-cellotriose and α-maltotriose. Carbohydr. Res. 338, 95–107 (2003)CrossRefGoogle Scholar
  20. 20.
    Lepri, A., Marchettini, N., Pogliani, L., Rossi, C., Ulgiati, S.: NMR structural investigation of cellobiose and glucose. 25, 521–523 (1987)Google Scholar
  21. 21.
    Gurney, R.W.: Ionic Process in Solution. McGraw-Hill, New York (1953)Google Scholar
  22. 22.
    Galema, S.A., Høiland, H.: Stereochemical aspects of hydration of carbohydrates in aqueous solutions. 3. Density and ultrasound measurements. J. Phys. Chem. 95, 5321–5326 (1991)CrossRefGoogle Scholar
  23. 23.
    Furuki, T.: Effect of molecular structure on thermodynamic properties of carbohydrates. A calorimetric study of aqueous di- and oligosaccharides at subzero temperatures. Carbohydr. Res. 337, 441–450 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute of Solution Chemistry of the Russian Academy of SciencesIvanovoRussian Federation

Personalised recommendations