Journal of Solution Chemistry

, Volume 35, Issue 11, pp 1537–1549 | Cite as

Cyclodextrins Binding to Paeonol and Two of Its Isomers in Aqueous Solution. Isothermal Titration Calorimetry and 1H NMR Investigations of Molecular Recognition

  • De-zhi Sun
  • Ling Li
  • Xiao-mei Qiu
  • Min Liu
  • Bao-lin Yin
Original Paper


Interactions between CDs with three substituted phenols, paeonol (Pae), acetovanillone (Ace) and 2-hydroxyl-5-methoxy-acetophone (Hma), which are isomers, have been determined by isothermal titration calorimetry (ITC) and 1H NMR in aqueous solution at 298.2 K. Both the binding thermodynamics and 1H NMR spectra show that the interaction between α-cyclodextrin (α-CD) molecule and each guest molecule is extremely weak. The thermodynamic parameters indicate that the binding processes of β-cyclodextrin (β-CD) with the isomers are mainly entropy driven and that β-CD binds with Pae or Ace in 1:1 stoichiometry, whereas with Hma binds in 1:1 and 2:1 stoichiometries. The thermodynamic parameters also suggest that γ-cyclodextrin (γ-CD) binds each isomer in the same 1:1 stoichiometry. The binding processes of Pae and Hma with γ-CD are enthalpy driven whereas Ace with γ-CD is predominantly driven by entropy. The 1H NMR spectra reveal that the three isomers were trapped into the torus cavity of the β-CD molecule from the narrow side during the binding process. Pae penetrates into the γ-CD cavity from the primary rim of the macrocycle whereas Ace does so from the secondary rim, but Hma appears not interact with the internal cavity of γ-CD at all.


Cyclodextrins (CDs) Paeonol Isomer Isothermal titration calorimetry Thermodynamic parameters 1H NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)CrossRefGoogle Scholar
  2. 2.
    Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier system. Chem. Rev. 98, 2045–2076 (1998)CrossRefGoogle Scholar
  3. 3.
    Loftsson, T., Masson, M.: Cyclodextrins in topical drug formulations: Theory and practice. Int. J. Pharm. 225, 15–30 (2001)CrossRefGoogle Scholar
  4. 4.
    Duan, M.S., Zhao, N., Össurardóttir, I.B., Thorsteinsson, T., Lofftsson, T.: Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: Formation of aggregates and higher-order complexes. Int. J. Pharm. 297, 213–222 (2005)Google Scholar
  5. 5.
    Szejitli, J.: Cyclodextrins and Their Inclusion Complexes, pp. 2–10. Akademiai Kiado Press, Budapest, Hungary (1982)Google Scholar
  6. 6.
    Cao, Y.J., Xiao, X.H., Lu, R.H., Guo, Q.X.: 1H NMR titration and quantum calculation for the inclusion complexes of styrene and α-methyl styrene with α, β- and γ-cyclodextrins. J. Mol. Struct. 660, 73–80 (2003)CrossRefGoogle Scholar
  7. 7.
    Kuroda, Y., Hiroshige, T., Sera, T., Shiroiwa, Y., Tanaka, H., Ogoshi, H.: Cyclodextein-sandwiched porphyrin. J. Am. Chem. Soc. 111, 1912–1913 (1989)CrossRefGoogle Scholar
  8. 8.
    Breslow, R., Czarnik, A.W.: Transaminations by pyridoxamine selectively attached at C-3 in β-cyclodextrin. J. Am. Chem. Soc. 105, 1390–1391 (1983)CrossRefGoogle Scholar
  9. 9.
    Eftink, M.R., Harrison, J.C.: Calorimetric studies of p-nitrophenol binding to α- and β-cyclodextrin. Bioorg. Chem. 10, 388–398 (1981)CrossRefGoogle Scholar
  10. 10.
    Kim, S.H., Kim, S.A., Park, M.K., Kim, S.H., Park, Y.D., Na, H.J., Kim, H.M., Shin, M.K., Ahn, K.S.: Paeonol inhibits anaphylactic reaction by regulating histamine and TNF-α. Int. Immunopharmacol. 4, 279–287 (2004)CrossRefGoogle Scholar
  11. 11.
    Wu, X.A., Chen, H.L., Chen, X.G., Hu, Z.D.: Determination of paeonol in rat plasma by high-performance liquid chromatography and its application to pharmacokinetic studies following oral administration of Moutan cortex decoction. Biomed. Chromatogr. 17, 504–508 (2003)CrossRefGoogle Scholar
  12. 12.
    Chou, T.C.: Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. British J. Pharmacology 139, 1146–1152 (2003)CrossRefGoogle Scholar
  13. 13.
    Vejrazka, M., Míek, R., típek, S.: Apocynin inhibits NADPH oxdase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim. Biophys. Acta 1722, 143–147 (2005)Google Scholar
  14. 14.
    Van den Worm, E., Beukelman, C.J., Van den Berg, A.J.J., Kroes, B.H., Labadie, R.P., Dijk, H.V.: Effect of methoxylation of apocynin and analogs on the inhibition of reactive oxygen species production by stimulated human neutrophils. Eur. J. Pharmacol. 433, 225–230 (2001)CrossRefGoogle Scholar
  15. 15.
    Peters, E.A., Hiltermann, J.T.N., Stolk, J.: Effect of apocynin on ozone-induced airway hyperresponsiveness to methacholine in asthmatics. Free Radic. Biol. Med. 31, 1442–1447 (2001)CrossRefGoogle Scholar
  16. 16.
    Li, Z.X., Ren, R.: The preparation for the inclusion complex of paeonol-β-cyclodextrin. Chin. Pharm. J. 39, 305–306 (2004)Google Scholar
  17. 17.
    Cliff, M.J., Ladbury, J.E.: A survey of the year 2002 literature on applications of isothermal titration calorimetry. J. Mol. Recognit. 16, 383–391 (2003)CrossRefGoogle Scholar
  18. 18.
    Jelesarov, I., Bosshard, H.R.: Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12, 3–18 (1999)CrossRefGoogle Scholar
  19. 19.
    Lafitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A.A., Klich, M., Deprez, P., Moras, D., Briand, C., Gilli, R.: DNA gyrase interaction with coumarin-based inhibitors: The role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochem. 41, 7217–7223 (2002)CrossRefGoogle Scholar
  20. 20.
    Ohtaka, H., Velaquez-Campoy, A., Xie, D., Freire, E.: Overcoming drug resistance in HIV-1 chemotherapy: The binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease. Protein Sci. 11, 1908–1916 (2002)CrossRefGoogle Scholar
  21. 21.
    Thompson, G., Owen, D., Chalk, P.A., Lowe, P.N.: Delineation of the Cdc42/Rac-binding domain of p21-activated kinase. Biochem. 37, 7885–7891 (1998)CrossRefGoogle Scholar
  22. 22.
    Dragan, A.I., Klass, J., Read, C., Churchill, M.E.A., Crane-Robinson, C., Privalov, P.L.: DNA binding of a non-sequence-specific HMG-D protein is entropy driven with a substantial non-electrostatic contribution. J. Mol. Biol. 331, 795–813 (2003)CrossRefGoogle Scholar
  23. 23.
    Abraham, T., Lewis, R.N.A.H., Hodges, R.S., McElhaney, R.N.: Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes. Biochem. 44, 2103–2112 (2005)CrossRefGoogle Scholar
  24. 24.
    Bou-Abdallah, F., Arosio, P., Santambrogio, P., Yang, X., Janus-Chandler, C., Chasteen, N.D.: Ferrous ion binding to recombinant human H-chain ferritin. An isothermal titration calorimetry study. Biochem. 41, 11184–11191 (2002)CrossRefGoogle Scholar
  25. 25.
    Lobo, B.A., Davis, A., Koe, G., Smith, J.G., Middaugh, C.R.: Isothermal titration calorimetric analysis of the interaction between lipids and plasmid DNA. Arch. Biochem. Biophys. 386, 95–105 (2001)CrossRefGoogle Scholar
  26. 26.
    Saboury, A.A., Bagheri, S., Ataie, G., Amanlou, M., Moosavi-Movahedi, A.A., Hakimelahi, G.H., Cristalli, G., Namaki, S.: Binding peoperties of adenosine deaminase interacted with theophylline. Chem. Pharm. Bull. 52, 1179–1182 (2004)CrossRefGoogle Scholar
  27. 27.
    Joshi, H., Shirude, P.S., Bansal, V., Ganesh, K.N., Sastry, M.: Isothermal titration calorimetry studies on the binding of amino acids to gold nanoparticles. J. Phys. Chem. B 108, 11535–11540 (2004)CrossRefGoogle Scholar
  28. 28.
    Buckton, G., Beezer, A.E.: The applications of microcalorinetry in the field of physical pharmacy. Int. J. Pharm. 72, 181–191 (1991)CrossRefGoogle Scholar
  29. 29.
    Cliff, M.J., Gutierrez, A., Ladbury, J.E.: A survey of the year 2003 literature on applications of isothermal titration calorimetry. J. Mol. Recognit. 17, 513–523 (2004)CrossRefGoogle Scholar
  30. 30.
    Fernandes, C.M., Caralho, R.A., Pereira da Costa, S., Veiga, F.J.B.: Multimodal molecular encapsulation of nicardipine hydrochloride by β-cyclodextrin, hydroxypropyl-β-cyclodextrin and triacetyl-β-cyclodextrin in solution. Structural studies by 1H NMR and ROESY experiments. Eur. J. Pharm. Sci. 18, 285–296 (2003)CrossRefGoogle Scholar
  31. 31.
    Salvatierra, D., Jaime, E., Virgili, A., Sánchez-Ferrando, F.: Determination of the inclusion geometry for the β-cyclodextrin/benzoic acid complex by NMR and molecular modeling. J. Org. Chem. 61, 9578–9581(1996)CrossRefGoogle Scholar
  32. 32.
    Bai, G.Y., Wang, Y.J., Yan, H.K.: Thermodynamics of interaction between cationic gemini surfactants and hydrophobically modified polymers in aqueous solutions. J. Phys. Chem. B. 106, 2153–2159 (2002)CrossRefGoogle Scholar
  33. 33.
    Isabel, G.O., Hallén, D.: The thermodynamics of the binding of benzene to β-cyclodextrin in aqueous solution. Thermochim. Acta 221, 183–193 (1993)CrossRefGoogle Scholar
  34. 34.
    Manzoori, J.L., Amjadi, M.: Spectrofluorimetric study of host-guest complexation of ibuprofen with β-cyclodextrin and its analytical application. Spectrochim. Acta, A: Mol. Biomol. Spectosc. 59, 909–916 (2003)CrossRefGoogle Scholar
  35. 35.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)CrossRefGoogle Scholar
  36. 36.
    Otagiri, M., Uekama, K., Ikeda, K.: Inclusion complexes of β-cyclodextrin with tranquilizing drugs phenothiazines in aqueous solution. Chem. Pharm. Bull. 23, 188–195 (1975)Google Scholar
  37. 37.
    Ventura, C.A., Puglisi, G., Zappalà, M., Mazzone, G.: A physico-chemical study on the interaction between papaverine and natural and modified β-cyclodextrins. Int. J. Pharm. 160, 163–172 (1998)CrossRefGoogle Scholar
  38. 38.
    Ganza-Gonzalez, A., Vila-Jato, J.L., Anguiano-Igea, S., Otero-Espinar, F.J., Blanco-Méndez, J.: A proton nuclear magnetic resonance study of the inclusion complex of naproxen with β-cyclodextrin. Int. J. Pharm. 106, 179–185 (1994)CrossRefGoogle Scholar
  39. 39.
    Djedaïni, F., Lin, S.Z., Perly, B., Wouessidjewe, D.: High-field nuclear magnetic resonance techniques for the investigation of a β-cyclodextrin: Indomethacin inclusion complex. J. Pharm. Sci. 79, 643–646 (1990)CrossRefGoogle Scholar
  40. 40.
    Zhang, D.D., Zhao, P. Y., Huang, N.J., Wu, Y.L., Zhai, Y.M.: Study of H-NMR spectra of α-cyclodextrin or dimethylcyclodextrin/toluene complexes in CF3COOD/D2O. In: Duchêne, D. (ed.), Minutes of the Fifth International Sympoxium on Cyclodextrins. pp. 146–149. Editions de Santé Press, Paris (1990)Google Scholar
  41. 41.
    Zhu, Q.H., Shao, Y.W., He, J.F., Deng, Q.Y.: The 1HNMR study on the β-cyclodextrin host-guest complexes. Chin. J. Magn. Reson. 18, 377–382 (2001)Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • De-zhi Sun
    • 1
  • Ling Li
    • 1
  • Xiao-mei Qiu
    • 1
  • Min Liu
    • 1
  • Bao-lin Yin
    • 1
  1. 1.College of Chemistry and Chemical EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations