Advertisement

Journal of Solution Chemistry

, Volume 35, Issue 10, pp 1389–1399 | Cite as

Interactions of Peptides and Lysozyme with Aqueous Tetraethylammonium Bromide at 298.15 K

  • Tuhina Banerjee
  • Nand Kishore
Original Paper

Abstract

The apparent molar volumes, V ø, 2, of gly-leu, gly-gly-leu and the partial specific volume ν of hen-egg-white lysozyme have been determined in aqueous of TEAB solutions by density measurements at 298.15 K. These data have been used to calculate the infinite dilution apparent molar volumes V 2,m o for the peptides in aqueous TEAB solutions and the standard partial molar volumes of transfer Δtr V 2,m o of the peptides from water to aqueous TEAB solutions. The results on Δtr V 2,m o of peptides from water to aqueous TEAB solutions have been interpreted in terms of ion-ion, ion-polar, hydrophilic-hydrophilic and hydrophobic-hydrophobic group interactions. In order to supplement this information, enthalpies of transfer of aqueous peptides from water to TEAB solution have been determined at 298.15 K using a VP-ITC titration calorimeter. The data on partial molar volumes and enthalpies of transfer have been discussed in light of various interactions operating in the ternary system of peptides, water and TEAB.

The partial specific volume of transfer of lysozyme from water to aqueous TEAB solutions also indicates the predominance of hydrophobic interactions.

Key Words

Standard partial molar volume Peptides Lysozyme Tetraethylammonium bromide Partial specific volume Isothermal titration calorimetry Enthalpies of transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Makhatadze, G.I., Privalov, P.L.: Protein interactions with urea and guanidinium chloride: a calorimetric study. J. Mol. Biol. 226, 491–505 (1992)CrossRefGoogle Scholar
  2. 2.
    Creighton, T.E.: Stability of folded conformations: Current opinion in structural biology. Curr. Opin. Struct. Biol. 1, 5–16 (1991)CrossRefGoogle Scholar
  3. 3.
    Arakawa, T., Timasheff, S.N.: Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochem. 3, 5912–5923 (1984)CrossRefGoogle Scholar
  4. 4.
    Velicelebi, G., Sturtevant, J.M.: Thermodynamics of the denaturation of lysozyme in alcohol-water mixtures. Biochem. 18, 1180–1186 (1979)CrossRefGoogle Scholar
  5. 5.
    Schellman, J.A.: Selective binding and solvent denaturation. Biopolymers 26, 549–559 (1987)CrossRefGoogle Scholar
  6. 6.
    Greene, Jr., Pace, C.N.: Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J. Biol. Chem. 249, 5388–5393 (1974)Google Scholar
  7. 7.
    Chen, C.-H., Berns, D.S.: Thermodynamic studies of protein-salt interaction. Effects of geometrical configuration in alkyl-substituted quaternary ammonium salts on their interactions with phycocyanin. J. Phys. Chem. 82, 2781–2785 (1978)CrossRefGoogle Scholar
  8. 8.
    Chen, C.-H., Berns, D.S.: Thermodynamic studies of protein-salt interaction. Phycocyanin-tetrabutylammonium bromide and -tetraethylammonium bromide. J. Phys. Chem. 81, 125–129 (1977)CrossRefGoogle Scholar
  9. 9.
    Jain, S., Ahluwalia, J.C.: Differential scanning calorimetric studies on the effect of ammonium and tetraalkylammonium halides on the stability of lysozyme. Biophys. Chem. 59, 171–177 (1996)CrossRefGoogle Scholar
  10. 10.
    Stojan, J., Golicnik, M., Froment, M., Estour, F., Masson, P.: Concentration-dependent reversible activation-inhibition of human butyrylcholinesterase by tetraethylammonium ion. Eur. J. Biochem. 269, 1154–1161 (2002)CrossRefGoogle Scholar
  11. 11.
    Collins, J.M., Rogers, K.S.: Melting point depression of DNA by tetraalkylammonium bromides. Chem. Biol. Interactions 19, 197–203 (1977)CrossRefGoogle Scholar
  12. 12.
    Banerjee, T., Kishore, N.: Interactions of some amino acids with aqueous tetraethylammonium bromide at 298.15,K: a volumetric approach. J. Solution. Chem. 34, 137–153 (2005)CrossRefGoogle Scholar
  13. 13.
    Archer, D.G.: Thermodynamic properties of the NaCl+H2O system. II. Thermodynamic properties of NaCl(aq), NaCl·2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)CrossRefGoogle Scholar
  14. 14.
    Hoiland, H.: Partial molar volumes of biochemical model compounds in aqueous solutions. In: Hinz, H.-J. (ed.) Thermodynamic Data for Biochemistry and Biotechnology, Springer-Verlag, Berlin (1986) pp. 18Google Scholar
  15. 15.
    James, D.W., Armishaw, R.F., Foost, R.L.: Structure of aqueous solutions. Librational band studies of hydrophobic and hydrophilic effects in solutions of electrolytes and nonelectrolytes. J. Phys. Chem. 80, 1346–1350 (1976)CrossRefGoogle Scholar
  16. 16.
    Hallenga, K., Grigera, I.R., Berenelson, H.J.: Influence of hydrophobic solutes on the dynamic behavior of water. J. Phys. Chem. 84, 2381–2390 (1980)CrossRefGoogle Scholar
  17. 17.
    Hechte, D., Tadesse, F., Walters, L.: Correlating hydration shell structure with amino acid hydrophobicity. J. Am. Chem. Soc. 115, 3336–3337 (1993)CrossRefGoogle Scholar
  18. 18.
    Ide, M., Maeda, Y., Kitano, H.: Effect of hydrophobicity of amino acids on the structure of water. J. Phys. Chem. B 101, 7022–7026 (1997)CrossRefGoogle Scholar
  19. 19.
    Lee, J.C., Timasheff, S.N.: Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride. Biochem. 13, 257–265 (1974)CrossRefGoogle Scholar
  20. 20.
    Sasahara, K., Sakurai, M., Nitta, K.: The volume and compressibility changes of lysozyme associated with guanidinium chloride and pressure-assisted unfolding. J. Mol. Biol. 291, 693–701 (1999)CrossRefGoogle Scholar
  21. 21.
    Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein. Chem. 14, 1–63 (1959)CrossRefGoogle Scholar
  22. 22.
    Chalikian, T.V., Gindikin, V.S., Breslauer, K.J.: Volumetric characterizations of the native, molten globule and unfolded states of cytochrome C at acidic pH. J. Mol. Biol. 250, 291–306 (1995)CrossRefGoogle Scholar
  23. 23.
    Chalikian, T.V., Totrov, M., Abagyan, R., Breslauer, K.J.: The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data. J. Mol. Biol. 260, 588–603 (1996)CrossRefGoogle Scholar
  24. 24.
    Richards, F.M.: Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology, BombayMumbaiIndia

Personalised recommendations