Journal of Solution Chemistry

, Volume 35, Issue 10, pp 1377–1388 | Cite as

Experimental and Molecular Mechanical Studies of Complexation of Some 2H- and 3H- Indole Derivatives with Aqueous β-Cyclodextrin

  • Khaldoun A. Al-Sou’od
  • Mohammad B. Zughul
  • Adnan A. Badwan
Original Paper


Phase solubility diagrams (PSDs) at 25 C and molecular mechanical (MM) modeling were used to study the aqueous complexation of some 2H- and 3H-indole derivatives with β-cyclodextrin (β-CD). Among the 3H-indole derivatives investigated in this work, indole-3H-butyric acid forms the most stable 1:1 complex of the B s -type PSD, whereas shorter chain derivatives form soluble 1:1 complexes (A L -type PSDs) with their stability increasing as the chain length increases. Indole-2 carboxylic acid forms highly stable 1:1 and 1:2 complexes, with the lower-order complex reaching saturation first (B s -type PSD). MM modeling indicates that the stability of the complex is highly correlated with the flexibility of the 3H-indole hydrocarbon chain, which yields a better geometrical fit within the β-CD cavity resulting from different hydrophilic interactions. These interactions are represented in the H-bonding of the carboxyl group with the primary hydroxyl group network that is situated at the narrow rim of the cavity, and also by a favorable interaction of the aromatic ring with the hydroxyl group network at the other rim.


Indole β-Cyclodextrin Inclusion compounds Molecular mechanics Phase-solubility diagrams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998).CrossRefGoogle Scholar
  2. 2.
    Harata, K.: In: Szejtli, J., Osa T. (eds.) Comprehensive Supramolecular Chemistry, Vol. 3, pp. 279–309, Pergamon Press, Oxford (1996).Google Scholar
  3. 3.
    Pastor, A., Marino, D., Mendicuti, F.: Complexes of dihexyl 2,6-naphthalene-dicarboxylate with α-and β-cyclodextrins: Fluorescence and molecular modeling. J. Photochem. Photobiol. A: Chem. 173, 238–247 (2005).CrossRefGoogle Scholar
  4. 4.
    Cao, J., Zhao, C., Huang, L., Ding, Y., Wang, L., Han, S.: Solubilization of substituted indole compounds by β-cyclodextrin in water. Chemosphere 1411–1416 (2000).Google Scholar
  5. 5.
    Nigam, S., Durocher, G.J.: Spectral and photophysical studies of inclusion complexes of some natural 3H-Indoles and their cations and anions with β-cyclodextrin. J. Phys. Chem. 100, 7135–7142 (1996).CrossRefGoogle Scholar
  6. 6.
    Velasco, J., Guardado, P., Carmona, C.I., Muoz, M.A., Balón, M.: Guest-host interactions between tetrahydrocarboline and β-cyclodextrin. J. Chem. Soc. Faraday Trans. 94, 1469–1476 (1998).CrossRefGoogle Scholar
  7. 7.
    Sanramé, N., de Rossi, R.H., Argiiello, G.A.: Effect of cyclodextrin on the exited state properties of 3-substituted indole derivatives. J. Phys. Chem. 100, 8151–8156 (1996).CrossRefGoogle Scholar
  8. 8.
    Bojionova, T., Coppel, Y., Viguerie, N.L., Milius, A., Rico-Lattes, I., Lattes, A.: Complexes between α, β, and γ-cyclodextrin and aliphatic guests as new noncovalent amphiphiles. Langmuir 19, 5233–5240 (2003).CrossRefGoogle Scholar
  9. 9.
    Ohashi, M., Kasatani, K., Shinohara, H., Sato, H.: Molecular mechanics studies on the inclusion compounds of cyanine dye monomer and dimer in a cyclodextrin cavity. J. Am. Chem. Soc. 112, 5824–5830 (1990).CrossRefGoogle Scholar
  10. 10.
    Kawasaki, N., Arkai, M., Nakamura, T., Tanada, S.: Inclusion behavior of 4- nonyphenol into cyclodextrin derivatives. J. Coll. Interface Sci. 238, 215–218 (2001).CrossRefGoogle Scholar
  11. 11.
    Junquera, E., Ruiz, D., Aicart, E.: Role of hydrophobic effect on the noncovalent interactions between salicylic acid and a series of β-cyclodextrins. J. Coll. Interface Sci. 216, 154–160 (1999).CrossRefGoogle Scholar
  12. 12.
    Duchêne, D.: New Trends in Cyclodextrins and Derivatives. Edition de Sante, Paris. France (1991).Google Scholar
  13. 13.
    Duchêne, D.: Cyclodextrins and Their Industrial Uses, Edition de Sante, Paris. France (1987).Google Scholar
  14. 14.
    Szejtli, J.: Comprehensive Supramolecular Chemistry, Elsevier, Oxford, Vol. 3. Cyclodextrins (1999).Google Scholar
  15. 15.
    Tee, O.S., Fedortchenko, A.A., Loncke, P.G., Gadosy, T.A.: Binding of aliphatic ketones to cyclodextrins in aqueous solution. J. Chem. Soc. Perkin Trans. 2, 1243–1249 (1996).Google Scholar
  16. 16.
    Shen, X., Belletète, M., Durocher, G.: Spectral and photophysical studies of the 1:3 (guest/host) rotaxane-loke inclusion complex formed by a 3H-indole and β-cyclodextrin. J. Phys. Chem. B 102, 1877–1883 (1998).CrossRefGoogle Scholar
  17. 17.
    Comba, P., Hambley, T.W.: Molecular Modeling of Inorganic Compounds, VCH Weinhein, Germany (1995).Google Scholar
  18. 18.
    Rappé, K., Casewit, C.J.: Molecular Mechanics Across Chemistry, University Science Book, Sausalito, California (1997).Google Scholar
  19. 19.
    Lipkowitz, K.B.: Applications of computational chemistry to the study of cyclodextrins. Chem. Rev. 98, 1829–1873 (1998).CrossRefGoogle Scholar
  20. 20.
    Lü, T-X., Zhang, D-B., Dong, S-J.: Molecular-mechanical study of cyclodextrin and its inclusion complexes. J. Chem. Soc. Faraday Trans. 2 85, 1439–1445 (1989).CrossRefGoogle Scholar
  21. 21.
    Cervero, M., Mendicuti, F.: Inclusion complexes of dimethyl 2,6-naphthalenecarboxylate with α- and β-cyclodextrins in aqueous medium: thermodynamics and molecular mechanics studies. J. Phys. Chem. B 104, 1572–1580 (2000).CrossRefGoogle Scholar
  22. 22.
    Higuchi, T., Conors, K.A.: Phase-Solubility Techniques, in C. N. Relley, Advances in Analytical Chemistry and Instrumentation, Vol. 4, Interscience Publisher, USA (1964).Google Scholar
  23. 23.
    Harata, K.: The structure of the cyclodextrin complexes. XIII. Crystal structure of β-cyclodextrin-1,4-diazabicyclo[1.2.2] octane complex tridecahydrate. Bull. Chem. Soc. Japan 55, 2315–2320 (1982).CrossRefGoogle Scholar
  24. 24.
    Al-Sou'od, K.A.: Molecular mechanics study of the inclusion complexes of some 1,2,4-oxadiazole derivatives of 3,3-bis(1,2,4-oxadiazol-5 (4H)-one) with β-cyclodextrin. J. Incl. Phenom. 54, 123–127 (2006)CrossRefGoogle Scholar
  25. 25.
    Serna, L., Marino, A., Mendicuti, F.: Inclusion complexes of a bichromophoric diester containing anthracene and naphthalene groups with α- and β-cyclodextrins: thermodynamics and molecular mechanics. Spectrochim. Acta, Part A 61, 1945–1954 (2005)CrossRefGoogle Scholar
  26. 26.
    Zughul, M.B., Badwan, A.A.: SL2 type phase solubility diagrams, complex formation and chemical speciation of soluble species. J. Incl. Phenom. Mol. Recog. Chem. 31, 243–264 (1998).CrossRefGoogle Scholar
  27. 27.
    Zughul, M.B., Al-Omari, M., Badwan, A.A.: Thermodynamics of propylparabene β-cyclodextrin inclusion complexes. Pharm. Dev. Tech., 3(1) 43–53 (1998).Google Scholar
  28. 28.
    Zughul, M.B., Badwan, A.A.: Rigorous analysis of S2L-product constants of both SL-and S2L-type complexes. Int. J. Pharm. 151, 109–119 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Khaldoun A. Al-Sou’od
    • 1
  • Mohammad B. Zughul
    • 2
  • Adnan A. Badwan
    • 3
  1. 1.Department of ChemistryAl al-Bayt UniversityMafrakJordan
  2. 2.Department of ChemistryUniversity of JordanAmmanJordan
  3. 3.The Jordanian Pharmaceutical Manufacturing CompanyNaorJordan

Personalised recommendations