Advertisement

Journal of Solution Chemistry

, Volume 35, Issue 9, pp 1303–1313 | Cite as

Thermodynamics of Aqueous Nitrilotriacetic Acid (NTA) Systems: Apparent and Partial Molar Heat Capacities and Volumes of Aqueous HNTA2−, NTA3−, MgNTA, CoNTA, NiNTA and CuNTA at 25 °C

  • Dzmitry Malevich
  • Zhongning Wang
  • Peter R. Tremaine
Original Paper

Abstract

Apparent molar heat capacities and volumes have been determined for aqueous Na2HNTA, Na3NTA, NaMgNTA, NaCoNTA, NaNiNTA and NaCuNTA at 25 °C. The experimental results have been analyzed in terms of Young’s rule with an extended Debye–Hückel equation to obtain standard partial molar heat capacities C p o and volumes V o for the species HNTA2−(aq), NTA3−(aq), MgNTA(aq), CoNTA(aq), NiNTA(aq) and CuNTA(aq), at ionic strengths I = 0 and I = 0.1 mol⋅kg−1. Values of C p o and V o were combined with the literature data to estimate the stability constants of the NTA complexes at temperatures up to 100 °C.

Keywords

Aqueous Apparent molar heat capacities Apparent molar volumes Standard partial molar properties Nitrilotriacetic acid NTA Transition metal—NTA complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, R.M., Martell, A.E.: Critically selected stability constants of metal complexes database version 5.0. NIST Standard Reference Database 46 (US Nat. Inst. of Standards and Technology, Gaithersburg, MD., 1998)Google Scholar
  2. 2.
    Booy, M., Swaddle, T.H.: Chelating agents in high temperature aqueous chemistry. 2. The thermal decomposition of some transition metal complexes of nitrilotriacetate (NTA). Can. J. Chem. 55, 1770–1776 (1977)CrossRefGoogle Scholar
  3. 3.
    Booy, M., Swaddle, T.H.: Hydrothermal preparation of magnetite from iron chelates. Can. J. Chem. 56, 402–404 (1978)CrossRefGoogle Scholar
  4. 4.
    Bridson, J.N., Quinlan, S., Tremaine, P.R.: Synthesis and crystal structure of maricite and sodium iron(III) hydroxy phosphate. Chem. Materials 10, 763–768 (1998)CrossRefGoogle Scholar
  5. 5.
    Hovey, J.K., Tremaine, P.R.: Thermodynamics of the complexes of aqueous iron(III), aluminum and several divalent cations with EDTA: Heat capacities, volumes and variations in stability with temperature. J. Phys. Chem. 89, 5541–5549 (1985)CrossRefGoogle Scholar
  6. 6.
    Hovey, J.K., Hepler, L.G., Tremaine, P.R.: Thermodynamics of aqueous EDTA systems: Apparent molar heat capacities and volumes of aqueous EDTA4-, HEDTA3-, H2EDTA2-, NaEDTA3-, and KEDTA3- at 25 Ĉ. Relaxation effects in mixed electrolyte systems and calculations of temperature dependent equilibrium constants. Can. J. Chem. 66, 881–896 (1988)CrossRefGoogle Scholar
  7. 7.
    Hovey, J.K., Hepler, L.G., Tremaine, P.R.: Thermodynamics of aqueous EDTA systems: Apparent and partial molar heat capacities and volumes of aqueous strontium and barium EDTA. J. Solution Chem. 15, 977–987 (1986)CrossRefGoogle Scholar
  8. 8.
    Xie, W., Tremaine, P.R.: Thermodynamics of aqueous diethylenetriaminepentaacetic acid (DTPA) systems: Apparent and partial molar heat capacities and volumes of aqueous H2DTPA3-, DTPA5-, CuDTPA3-, and Cu2DTPA- from 10 to 55 Ĉ. J. Solution Chem. 28, 291–325 (1999)Google Scholar
  9. 9.
    Vogel, A.L.: Textbook of Quantitative Chemistry Analysis, 5th edn. Longman, New York (1989)Google Scholar
  10. 10.
    Picker, P., Leduc, P.A., Philip, P.R., Desnoyers, J.E.: Heat capacity of solutions by flow microcalorimetry. J. Solution Chem. 3, 631–642 (1971)Google Scholar
  11. 11.
    Picker, P., Tremblay, E., Jolicoeur, C.: A high-precision digital readout flow densimeter for liquids. J. Solution Chem. 3, 377–384 (1974)CrossRefGoogle Scholar
  12. 12.
    Hill, P.G.: A unified fundamental equation for the thermodynamic properties of water. J. Phys. Chem. Ref. Data 19, 1233–1306 (1990)Google Scholar
  13. 13.
    Archer, D.G.: Thermodynamic properties of the NaCl + H2O system II. Thermodynamic properties of NaCl(aq), NaClċ2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–823 (1992)Google Scholar
  14. 14.
    Desnoyers, J.E., de Visser, C., Perron, G., Picker, P.: Reexamination of the heat capacities obtained by flow microcalorimetry. Recommendation for the use of a chemical standard. J. Solution Chem. 5, 605–616 (1976)CrossRefGoogle Scholar
  15. 15.
    Archer, D.G., Wang, P.: The dielectric constant of water and Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)CrossRefGoogle Scholar
  16. 16.
    Barbero, J.A., Hepler, L.G., McCurdy, K.G., Tremaine, P.R.: Thermodynamics of aqueous carbon dioxide and sulfur dioxide: Heat capacities, volumes, and the temperature dependence of ionization. Can. J. Chem. 6, 2509–2617 (1983)CrossRefGoogle Scholar
  17. 17.
    Mains, G.J., Larson, J.W., Hepler, L.G.: General thermodynamic analysis of the contributions of temperature-dependent chemical equilibria to heat capacities of ideal gases and ideal associated solutions. J. Phys. Chem. 88, 1257–1261 (1984)CrossRefGoogle Scholar
  18. 18.
    Lein, N.R., Timmons, M.A., Belkin, G.J.H., Holst, J.R., Janzen, M.L., Kanthasway, R., Lin, W., Mubayi, A., Perring, M.I., Rupert, L.M., Saha, A., Schoenfeldt, N.J., Sokolov, A.N., Telford, J.R.: Effects of counter-ion size on solid state structures of M2+(nitriloacetate complexes). Inorg. Chim. Acta 358, 1284–1288 (2005)CrossRefGoogle Scholar
  19. 19.
    Barnett, B.L., Uchtman, W.A.: Structural investigation of calcium binding to aminocarboxylates. Crystal structures of Ca(CaEDTA)ċ7H2O and Na(CaNTA). Inorg. Chem. 12, 2674–2677 (1979)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Dzmitry Malevich
    • 1
    • 3
  • Zhongning Wang
    • 2
  • Peter R. Tremaine
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of GuelphGuelphCanada
  2. 2.Department of ChemistryMemorial University of NewfoundlandSt. John’sCanada
  3. 3.RMC Fuel Cell Research CenterKingstonCanada

Personalised recommendations