Journal of Solution Chemistry

, Volume 35, Issue 7, pp 979–989 | Cite as

Partition Equilibria for Alcohols in Reverse Micellar AOT-Oil-Water Systems Studied by PGSE-FT NMR. A Comparison Between AOT-containing and the Corresponding AOT-free Systems

Original Paper


Microemulsions of the reverse micellar type were investigated by determining the self-diffusion coefficients of the components using the Pulsed Field Gradient Spin Echo – Fourier Transform NMR method (PGSE-FT NMR). The microemulsions were composed of the surfactant AOT, water and an oil (either benzene or cyclohexane), forming a water core in an oil continuum. The primary alcohols ranging from methanol to 1-decanol were added to the microemulsions as a fourth component. The degree of binding, p, of the alcohol to the micelles was determined from the measured self-diffusion coefficients for this component. Partition equilibrium constants were calculated from the values of p. Thermodynamic partition equilibrium constants, K c , calculated from the partition coefficients are presented and compared with values based on literature data for AOT-free systems. Similarities and differences between these cases are revealed and interpreted.


AOT Microemulsion Primary alcohols PGSE-FT NMR Partition equilibria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prince, L.M.: In: Prince, L.M. (ed.) Microemulsions, pp. 1–32. Academic Press, New York (1977)Google Scholar
  2. 2.
    Evans, D.F., Wennerström, H.: The Colloidal Domain. VCH Publishers Inc., New York (1994)Google Scholar
  3. 3.
    Larsson, K.M., Adlercreutz, P., Mattiasson, B., Olsson, U.: Enzyme catalysis in uni- and bi-continous microemulsions: Dependence of kinetics on substrate partitioning. J. Chem. Soc. Faraday Trans. 87, 465–471 (1991)CrossRefGoogle Scholar
  4. 4.
    Bansal, V.K., Shah, D.O.: In: Prince, L. M. (ed.) Microemulsions, pp. 149–173. Academic Press, New York (1977)Google Scholar
  5. 5.
    Abuin, E., Lissi, E., Duarte, R., Silber, J.J., Biasutti, M.A.: Solubilization in AOT-water reverse micelles. Effect of the external solvent. Langmuir 18, 8340–8344 (2002)CrossRefGoogle Scholar
  6. 6.
    Stilbs, P.: Solubilization equilibria determined through Fourier transform NMR self-diffusion measurements. J. Colloid Interface Sci. 80, 608–610 (1981)CrossRefGoogle Scholar
  7. 7.
    Stilbs, P.: Fourier transform NMR pulsed-gradient spin-echo (FT-PGSE) self-diffusion measurements of solubilization equilibria in SDS solutions. J. Colloid Interface Sci. 87, 385–394 (1982)CrossRefGoogle Scholar
  8. 8.
    Stilbs, P.: Micellar breakdown by short-chain alcohols. A multicomponent FT-PGSE-NMR self-diffusion study. J. Colloid Interface Sci. 89, 547–554 (1982)CrossRefGoogle Scholar
  9. 9.
    Stilbs, P.: A comparative study of micellar solubilization for combinations of surfactants and solibilizates using the Fourier transform pulsed-gradient spin-echo NMR multicomponent self-diffusion technique. J. Colloid Interface Sci. 94, 463–469 (1983)CrossRefGoogle Scholar
  10. 10.
    Skrzecz, A., Shaw, D., Maczynski, A.: IUPAC-NIST Solubility Data Series 69. Ternary alcohol – hydrocarbon – water systems. J. Phys. Chem. Ref. Data 28, 983–1235 (1999)CrossRefGoogle Scholar
  11. 11.
    Stilbs, P.: Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog. NMR Spectrosc. 19, 1–45 (1987)CrossRefGoogle Scholar
  12. 12.
    von Meerwall, E.D.: Self-diffusion in polymer systems, measured with field-gradient spin echo NMR methods. Adv. Polym. Sci. 54, 1–29 (1984)Google Scholar
  13. 13.
    Lindblom, G., Orädd, G.: NMR Studies of translational diffusion in lyotropic liquid crystals and lipid membranes. Prog. NMR Spectrosc. 26, 483–515 (1994)CrossRefGoogle Scholar
  14. 14.
    Masaro, L., Zhu, X.X.: Pulsed field gradient NMR spectroscopy in the study of self-diffusion in polymer systems. Can. J. Anal. Sci. Spectrosc. 43, 81–89 (1998)Google Scholar
  15. 15.
    von Meerwall, E.D.: How good is the bead-spring model? J. Non-Cryst. Solids 131–133, 551–555 (1991)Google Scholar
  16. 16.
    Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965)CrossRefGoogle Scholar
  17. 17.
    Johannessen, E., Walderhaug, H., Balinov, B.: Aqueous microemulsions of a fluorinated surfactant and oil studied by PFG-NMR: transformation from threadlike to spherical micelles. Langmuir 20, 336–341 (2004)CrossRefGoogle Scholar
  18. 18.
    Stilbs, P., Paulsen, K., Griffiths, P.C.: Global least-squares analysis of large, correlated spectral data sets: application to component-resolved FT-PGSE NMR spectroscopy. J. Phys. Chem. 100, 8180–8189 (1996)CrossRefGoogle Scholar
  19. 19.
    Stilbs, P., Paulsen, K.: Global least-squares analysis of large, correlated spectral data sets and application to chemical kinetics and time-resolved fluorescence. Rev. Sci. Instrum. 67, 4380–4386 (1996)CrossRefGoogle Scholar
  20. 20.
    Stilbs, P.: Component separation in NMR imaging and multidimensional spectroscopy through global least-squares analysis, based on prior knowledge. J. Magn. Reson. 135, 236–241 (1998)CrossRefGoogle Scholar
  21. 21.
    Callaghan, P.T., Le Gros, M.A., Pinder, D.N.: The measurement of diffusion using deuterium pulsed field gradient nuclear magnetic resonance. J. Chem. Phys. 79, 6372–6381 (1983)CrossRefGoogle Scholar
  22. 22.
    Stilbs, P., Lindman, B.: NMR measurements on microemulsions. Progr. Colloid Polymer Sci. 69, 39–47 (1984)Google Scholar
  23. 23.
    Jönsson, B., Wennerström, H., Nilsson, P.G., Linse, P.: Self-diffusion of small molecules in colloidal systems. Colloid Polymer Sci. 264, 77–88 (1986)CrossRefGoogle Scholar
  24. 24.
    C.R.C. Handbook of Chemistry and Physics, 84th Ed. (2003–2004)Google Scholar
  25. 25.
    Kotlarchyk, M., Chen, S-H., Huang, J.S.: Temperature dependence of size and polydispersity in a three-component microemulsion by small-angle neutron scattering. J. Phys. Chem. 86, 3273–3276 (1982)CrossRefGoogle Scholar
  26. 26.
    Eicke, H-F., Rehak, J.: On the formation of water/oil-microemulsions. Helv. Chim. Acta 59, 2883–2891 (1976)CrossRefGoogle Scholar
  27. 27.
    Martin, C.A., Magid, L.J.: Carbon-13 NMR investigations of aerosol OT water-in-oil microemulsions. J. Phys. Chem. 85, 3938–3944 (1981)CrossRefGoogle Scholar
  28. 28.
    Day, R.A., Robinson, B.H., Clarke, J.H.R, Doherty, J.V.: Characterisation of water-containing reversed micelles by vicosity and dynamic light scattering methods. J. Chem. Soc., Faraday Trans. 1 75, 132–139 (1979)CrossRefGoogle Scholar
  29. 29.
    Howe, A.M., Toprakcioglu, C., Dore, J.C., Robinson, B.H.: Small-angle neutron scattering studies of microemulsions stabilised by aerosol-OT. J. Chem. Soc., Faraday Trans.1 82, 2411–2422 (1986)CrossRefGoogle Scholar
  30. 30.
    Lin, T.-L., Hu, Y., Lee, T.-T.: The effect of alcohols on the size of water-in-oil microemulsion droplets. Prog. Colloid. Polym. Sci. 105, 268–271 (1997)CrossRefGoogle Scholar
  31. 31.
    Blees, M.H., Geurts, J. M., Leyte, J.C.: Self-diffusion of charged polybutadiene latex particles in water measured by pulsed field gradient NMR. Langmuir 12, 1947–1957 (1996)CrossRefGoogle Scholar
  32. 32.
    Sakurai, M., Nakamura, K., Takenaka, N.: Apparent molar volumes and apparent molar adiabatic compressions of water in some alcohols. Bull. Chem. Soc. Jpn. 67, 352–359 (1994)CrossRefGoogle Scholar
  33. 33.
    Friedman, M.E., Scheraga, H.A.: Volume changes in hydrocarbon-water systems. partial molal volumes of alcohol-water solutions. J. Phys. Chem. 69, 3795–3800 (1965)CrossRefGoogle Scholar
  34. 34.
    Söderman, O., Balinov, B.: Microstructures in solution and ordered phases of surfactants. Self-diffusion in the AOT/octanol/water system. Progr. Colloid Polym. Sci. 108, 105–110 (1998)CrossRefGoogle Scholar
  35. 35.
    Rosenholm, J.B., Grigg, R.B., Hepler, L.G.: Thermodynamic properties of aqueous solutions of surfactants: molar heat capacities and volumes. J. Chem. Thermodyn. 18, 1153–1163 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OsloOsloNorway
  2. 2.Department of Physical Chemistry, Graduate School of Materials ResearchÅbo Akademi UniversityTurkuFinland

Personalised recommendations