Advertisement

Journal of Solution Chemistry

, Volume 35, Issue 6, pp 787–801 | Cite as

Thermodynamics of Mixtures Containing Organic Carbonates. Part XV. Application of the Kirkwood-Buff Theory to the Study of Interactions in Liquid Mixtures Containing Dialkyl Carbonates and Alkanes, Benzene, CCl4 or 1-Alkanols

  • Juan Antonio González
  • Ismael Mozo
  • S. Villa
  • Nicolás Riesco
  • Isaías García de la Fuente
  • José Carlos Cobos
Original Paper

Abstract

Binary liquid mixtures containing a dialkyl carbonate (dimethyl or diethyl carbonate) and organic solvents such as alkanes, benzene, CCl4, or 1-alkanols were studied within the framework of the Kirkwood-Buff formalism. The Kirkwood-Buff integrals, linear coefficients of preferential solvation and local mole fractions were calculated. Results were interpreted assuming that the mixtures with alkanes or 1-alkanols are not random mixtures, which can be ascribed to the existence of strong dipolar interactions between like molecules. Systems containing benzene or CCl4 are both random and more ordered because of the charge transfer or dipole/induced dipole interactions between the polar group of the solute (O–CO–O) and the polarizable solvent molecules. The effect of increasing temperature was also examined.

Keywords

Kirkwood-Buff Theory Organic carbonates Solvents Interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parrish, J.P., Salvatore, R.N., Jung, K.W.: Perspectives on alkyl carbonates in organic synthesis. Tetrahedron 56, 8207–8237 (2000)CrossRefGoogle Scholar
  2. 2.
    Annesini, M.C., De Santis, R., Kikic, I., Marrelli, R.: Excess enthalpy and T-x data of aromatic-propylene carbonate mixtures. J. Chem. Eng. Data 29, 39–41 (1984)CrossRefGoogle Scholar
  3. 3.
    Naejus, R., Lemordant, D., Coudert, R., Willmann, P.: Excess thermodynamic properties of binary mixtures containing linear or cyclic carbonates as solvents at the temperatures 298.15 K and 315.15 K. J. Chem. Thermodyn. 29, 1503–1515 (1997)CrossRefGoogle Scholar
  4. 4.
    Tobishima, S., Yamaji, A.: Electrolytic characteristics of mixed solvents electrolytes for lithium secondary batteries. Electrochim. Acta 28, 1067–1072 (1983)CrossRefGoogle Scholar
  5. 5.
    Rivetti, F.: The role of dimethylcarbonate in the replacement of hazardous chemicals: Comptes Rendus, Acad. Sci. Ser. IIc, Chim. 3, 497–503 (2000)Google Scholar
  6. 6.
    Wallington, T.J., Hurley, M.D., Ball, J.C., Straccia, A.M., Platz, J., Christensen, L.N., Sehested, J., Nielsen, O.J.: Atmospheric chemistry of dimethoxymethane (CH3OCH2OCH3): Kinetics and mechanism of its reaction with OH radicals and fate of the alkoxy radicals CH3OCHO•OCH3 and CH3OCH2OCH2O•. J. Phys. Chem. A 101, 5302–5308 (1997)CrossRefGoogle Scholar
  7. 7.
    Pacheco, M. A., Marshall, C.L.: Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy and Fuels 11, 2–29 (1997)CrossRefGoogle Scholar
  8. 8.
    García, J., Lugo, L., Comuňas, M.J., López, E.R., Fernández, J.: Experimental excess volumes of organic carbonate + alkane systems. Estimation of the parameters of the Nitta-Chao model for this kind of binary mixture. J. Chem. Soc., Faraday Trans. 94, 1707–1712 (1998)CrossRefGoogle Scholar
  9. 9.
    Simeral, L., Amey, R.L.: Dielectric properties of liquid propylene carbonate. J. Phys. Chem. 74, 1443–1446 (1970)CrossRefGoogle Scholar
  10. 10.
    Payne, R., Theodorou, I.E.: Dielectric properties and relaxation in ethylene carbonate and propylene carbonate. J. Phys. Chem. 76, 2892–2900 (1972)CrossRefGoogle Scholar
  11. 11.
    Cocero, M.J., García, I., González, J.A., Cobos, J.C.: Thermodynamics of binary mixtures containing organic carbonates. Part VI. Isothermal vapor-liquid equilibria for dimethyl carbonate + normal alkanes. Fluid Phase Equilib. 68, 151–161 (1991)CrossRefGoogle Scholar
  12. 12.
    Cocero, M.J., González, J.A., García, I., Cobos, J.C., Mato, F.: Liquid-vapor equilibrium, and excess Gibbs energy of diethyl carbonate + normal alkanes (C6, C8, C12). Int. Data Ser., Selected Data Mixtures Ser. A2, 130–138 (1991)Google Scholar
  13. 13.
    Cocero, M.J., González, J.A., García, I., Cobos, J.C., Mato, F.: Liquid-Vapor equilibrium and excess Gibbs energy of dimethyl or diethyl carbonates + cyclohexane, + benzene or + tetrachloromethane. Int. Data Ser. Selected Data Mixtures Ser. A2, 112–129 (1991)Google Scholar
  14. 14.
    Sporzynski, A., Szurgocinska, M., Domanska, U., González, J.A.: Thermodynamics of mixtures containing organic carbonates. 14. Excess molar Gibbs energies for 1-hexanol + dimethyl or diethyl carbonate systems at 353.1 K and 363.15 K. Comparison with ERAS results. Ind. Eng. Chem. Res. 42, 4382–4388 (2003)CrossRefGoogle Scholar
  15. 15.
    González, J.A., García, I., Cobos, J.C., Casanova, C.: Thermodynamics of binary mixtures containing organic carbonates. 4. Liquid-Liquid Equilibria of dimethyl carbonate + selected n-alkanes. J. Chem. Eng. Data 36, 162–164 (1991)Google Scholar
  16. 16.
    Domanska, U., Szurgocinska, M., González, J.A.: Thermodynamics of binary mixtures containing organic carbonates. Part XI. SLE measurements for systems of diethyl carbonate with Long n-Alkanes: Comparisons with DISQUAC and Modified UNIFAC Predictions. Fluid Phase Equilib. 190, 15–31 (2001)Google Scholar
  17. 17.
    Domanska, U., Szurgocinska, M., González, J.A.: Thermodynamics of binary mixtures containing organic carbonates. 12. SLE and LLE measurements for systems of dimethyl carbonate with long n-alkanes. Comparisons with DISQUAC and modified UNIFAC predictions. Ind. Eng. Chem. Res. 41, 3523–3259 (2002)CrossRefGoogle Scholar
  18. 18.
    González, J.A., Szurgocinska, M., Domanska, U.: Thermodynamics of mixtures containing organic carbonates. Part XIII. Solid-liquid equilibria of long-chain 1-alkanol + dimethyl or diethyl carbonate systems: DISQUAC and ERAS analysis of the hydroxyl/carbonate interactions. Fluid Phase Equilib. 200, 349–374 (2002)CrossRefGoogle Scholar
  19. 19.
    García de la Fuente, I., González, J.A., Cobos, J.C., Casanova, C.: Excess molar volumes for dimethyl carbonate + heptane, decane, 2,2,4-trimethylpentane, cyclohexane, benzene, toluene, or tetrachloromethane. J. Chem. Eng. Data 37, 535–537 (1992)CrossRefGoogle Scholar
  20. 20.
    García de la Fuente, I., González, J.A., Cobos, J.C., Casanova, C.: Excess molar volumes of diethyl carbonate with hydrocarbons or tetrachloromethane at 25 Ĉ. J. Solution Chem. 24, 827–835 (1995)CrossRefGoogle Scholar
  21. 21.
    García, I., Cobos, J.C., González, J.A., Casanova, C., Cocero, M.J.: Thermodynamics of binary mixtures containing organic carbonates. 1. Excess enthalpies of dimethyl carbonate + hydrocarbons or + tetrachloromethane. J. Chem. Eng. Data 33, 423–426 (1988)CrossRefGoogle Scholar
  22. 22.
    García, I., Cobos, J.C., González, J.A., Casanova, C.: Excess enthalpies of diethyl carbonate + some normal alkanes (C6-C14), + cyclohexane, + methylcyclohexane, + benzene, + toluene, or + tetrachloromethane. Int. Data Ser., Selected Data Mixtures Ser. A3, 164–173 (1987)Google Scholar
  23. 23.
    Kehiaian, H.V., González, J.A., García, I., Cobos, J.C., Casanova, C., Cocero, M.J.: Prediction of vapour-liquid and liquid-liquid equilibria and of excess enthalpies of mixing in linear carbonates + n-alkane or+ cyclohexane mixtures using DISQUAC. Fluid Phase Equilib. 64, 1–11 (1991)CrossRefGoogle Scholar
  24. 24.
    Kehiaian, H.V., González, J.A., García, I., Cobos, J.C., Casanova, C., Cocero, M.J.: Steric and inductive in binary mixtures of organic carbonates with aromatic hydrocarbons or tetrachloromethane. Fluid Phase Equilib. 69, 81–89 (1991)CrossRefGoogle Scholar
  25. 25.
    Kehiaian, H.V.: Thermodynamics of binary liquid organic mixtures. Pure Appl. Chem. 57, 15–30 (1985)CrossRefGoogle Scholar
  26. 26.
    Guggenheim, E.A.: Mixtures (Oxford University Press, Oxford, 1952)Google Scholar
  27. 27.
    Heintz, A.: A new theoretical approach for predicting excess properties of alkanol-alkane mixtures. Ber. Bunsenges. Phys. Chem. 89, 172–181 (1985)Google Scholar
  28. 28.
    Kirkwood, J. G., Buff, F.P.: The statistical mechanical theory of solutions 1. J. Chem. Phys. 19, 774–777 (1951)CrossRefGoogle Scholar
  29. 29.
    Ben-Naim, A.: Inversion of the Kirkwood-Buff theory of solutions: Application to the water-ethanol system. J. Chem. Phys. 67, 4884–4890 (1977)CrossRefGoogle Scholar
  30. 30.
    Matteoli, E., Lepori, L.: Solute-solute interactions in water. II. An analysis through the Kirkwood-Buff integrals for 14 organic solutes. J. Chem. Phys. 80, 2856–2863 (1984)CrossRefGoogle Scholar
  31. 31.
    Marcus, Y.: Preferential solvation in mixed solvents. X. Completely miscible aqueous co-solvent binary mixtures at 298.15 K. Monatsh. Chem. 132, 1387–1411 (2001)Google Scholar
  32. 32.
    Zielkiewicz, J.: Solvation of DMF in the N,N-dimethylformamide + alcohol + water mixtures investigated by means of the Kirkwood-Buff integrals. J. Phys. Chem. 99, 4787–4793 (1995)CrossRefGoogle Scholar
  33. 33.
    Zielkiewicz, J.: Solvation of amide group by water and alcohols investigated using the Kirkwood-Buff theory of solutions. J. Chem. Soc. Faraday Trans. 94, 1713–1719 (1998)CrossRefGoogle Scholar
  34. 34.
    Allen, G., Chai, Z., Chong, C.L., Higgins, J.S., Tripathi, J.: Thermodynamics of oligomeric binary mixtures of polyethylene glycol and polypropylene glycol methylethers. Polymer 25, 239–244 (1984)CrossRefGoogle Scholar
  35. 35.
    Pardo, J.M., Tovar, C.A., Cerdeiriňa, C.A., Carballo, E., Romaní, L.: Excess molar volumes and excess molar heat capacities of dimethyl carbonate, or diethyl carbonate + n-heptane at several temperatures. J. Chem. Thermodyn. 31, 787–796 (1999)CrossRefGoogle Scholar
  36. 36.
    Pardo, J.M., Tovar, C.A., Cerdeirińa, C.A., Carballo, E., Romaní, L.: Excess quantities of dialkyl carbonate+ cyclohexane mixtures at a variable temperature. Fluid Phase Equilib. 179, 151–163 (2001)CrossRefGoogle Scholar
  37. 37.
    Zielkiewicz, J.: Preferential solvation of N-methylformamide, N,N-dimethylformamide and N-methylacetamide by water and alcohols in the binary and ternary mixtures. Phys. Chem. Chem. Phys. 2, 2925–2932 (2000)CrossRefGoogle Scholar
  38. 38.
    Orye, R. V., Prausnitz, J.M.: Thermodynamic properties of some binary solutions containing hydrocarbons and polar organic solvents. Trans Faraday Soc. 61, 1338–1346 (1965)CrossRefGoogle Scholar
  39. 39.
    Negadi, L., Blondel, A., Mokbel, I., Ait-Kaci, A., Jose, J.: Liquid-vapor equilibria, excess Gibbs energies, and excess volumes of dimethyl carbonate + heptane, + 1-hexene, + cyclohexane, or + benzene. Int. Data Ser., Sel. Data Mixtures Ser. A 21, 169–194 (1993)Google Scholar
  40. 40.
    Rodríguez, A., Canosa, J., Tojo, J.: Physical properties of binary mixtures (dimethyl carbonate + alcohols) at several temperatures. J. Chem. Eng. Data 46, 1476–1486 (2001)CrossRefGoogle Scholar
  41. 41.
    Comelli, F., Francesconi, R.: Isothermal vapor-liquid equilibria measurements, excess molar enthalpies and excess molar volumes of dimethyl carbonate + methanol, + ethanol, and + propan-1-ol at 313.15 K. J. Chem. Eng. Data 42, 705–709 (1997)CrossRefGoogle Scholar
  42. 42.
    Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic solvents, in techniques of chemistry, Vol. II A. Weissberger, Ed. (Wiley, New York, 1986)Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Juan Antonio González
    • 1
  • Ismael Mozo
    • 1
  • S. Villa
    • 1
  • Nicolás Riesco
    • 1
  • Isaías García de la Fuente
    • 1
  • José Carlos Cobos
    • 1
  1. 1.G.E.T.E.F. Dpto Termodinámica y Física Aplicada, Facultad de CienciasUniversidad de ValladolidValladolidSpain

Personalised recommendations