Journal of Solution Chemistry

, Volume 35, Issue 1, pp 51–62 | Cite as

Kinetics and Mechanism of the Oxidation of Vanillin by Hexacyanoferrate(III) in Aqueous Alkaline Medium

  • Timy P. Jose
  • Sharanappa T. Nandibewoor
  • Suresh M. Tuwar

The title reaction was investigated in aqueous alkaline medium. A first-order dependence in hexacyanoferrate(III) concentration and a fractional order in both vanillin and alkali were obtained at the concentrations studied. The added product, hexacyanoferrate(II), had a retarding effect on the rate of reaction. Ionic strength and dielectric constant of the reaction medium have little effect on the reaction rate. The effect of temperature on the rate of reaction has also been studied and activation parameters have been evaluated. A mechanism based on the experimental results is proposed and the rate law is derived. The reaction constants are calculated and used to regenerate the kobs values, which are compared with the experimental values.


Vanillin oxidation reduction kinetics mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Kelson and P. P. Phengy, Kinetic Study of 2-Propanol and Benzyl Alcohol Oxidation by Alkaline Hexacyanoferrate(III)-Catalyzed by a Terpyridiyl Ruthenium Complex, Int. J. Chem. Kinet. 32, 760–770 (2000).CrossRefGoogle Scholar
  2. 2.
    A. I. Vovk, I. V. Muraveva, V. P. Kukhar, and V. F. Baklan, Kinetics of Oxidation of Vitamin B1 and Its o-Acyl Analogs with Ferricyanide-a Mechanistic Model of Thiamin-Binding Protein, Russ. J. Gen. Chem. 70, 1108–1112 (2000).Google Scholar
  3. 3.
    P. T. Speakman and W. A. Waters, Kinetic Features of Oxidation of Aldehydes, Ketones and Nitroparaffines with Alkaline Ferricyanide, J. Chem. Soc. 40–50 (1955).Google Scholar
  4. 4.
    V. N. Singh, M. C. Gangwar, B. B. L. Saxena, and M. P. Singh, Kinetics and Mechanism of Formaldehyde by Hexacyanoferrate(III) Ion, Can. J. Chem. 47, 1051–1056 (1969).Google Scholar
  5. 5.
    V. N. Singh, M. P. Singh, and B. B. L. Saxena, Kinetics and Mechanism of Alkaline Ferricyanide Oxidation of Acetone and Ethyl Methyl Ketone, Indian J. Chem. 8, 529–532 (1970).Google Scholar
  6. 6.
    T. Janson, Mutat. Res. 169, 129 (1986).Google Scholar
  7. 7.
    M. I. Makurub, Toxicity of Anillin, Gig. Sanit. 6, 78–80 (1980).Google Scholar
  8. 8.
    M. Imoto, T. Maeda, and T. Ouchi, Studies on Vinyl Polymerization Part 372 Polymerization of Methyl Methacrylate Initiated with Vanillin, Chem. Lett. 2, 153–156 (1978).Google Scholar
  9. 9.
    U. S. Pat. 4, 005,127, W. S. Knowles, W. S. Sabacky, and B. D. Vineyard, L- Dopa and Intermediates (patent to Monsanto Co.) (1977).Google Scholar
  10. 10.
    L. C. Raiford and J. G. Lichty, The Chlorine Derivatives of Vanillin and Some of Their Reactions, J. Am. Chem. Soc. 52, 4576–4586 (1930).Google Scholar
  11. 11.
    P. L. Sharma and N. Gaeuz, Electrolytic Reduction of Vanillin to Vanillyl Alcohol at Amalgamated Copper, Lead and Zinc Electrodes, J. Appl. Electrochem. 2, 173–176 (1981).Google Scholar
  12. 12.
    G. Lang, and R. G. Lange, Cleavage of Alkyl o-Hydroxyphenyl Ethers, J. Org. Chem. 27, 2037–2039 (1962).Google Scholar
  13. 13.
    C. P. Kathari, P. D. Pol, and S. T. Nandibewoor, The Kinetics and Mechanism of Oxidation of Vanillin by Diperiodatonickelate(IV) in Aqueous Alkaline Medium, Turk. J. Chem. 26, 229–236 (2002).Google Scholar
  14. 14.
    M. B. Jacob, Am. Perfum. Essnt. Oils Rev. 57, 45 (1952).Google Scholar
  15. 15.
    G. H. Jeffery, J. Bassett, J. Mendham, and R. C. Denney, Vogel's Text Book of Quantitative Chemical Analysis, 5th edn. (ELBS Longman, Essex, UK, 1991) (a) p. 181 (b) p. 320.Google Scholar
  16. 16.
    M. Latshaw, A Simple Tangentimeter, J. Am. Chem. Soc. 47, 793–794 (1925).Google Scholar
  17. 17.
    F. Feigl, Spot Tests in Organic Analysis (Elsevier, New York, 1975), p. 332.Google Scholar
  18. 18.
    S. M. Tuwar, S. T. Nandibewoor, and J. R. Raju, Oxidation of Chromium(III) by Alkaline Hexacyanoferrate(III), Transit. Met. Chem. 16, 335–338 (1991); G. H. Hugar and S. T. Nandibewoor, Kinetics of Osmium(VIII) Catalysis of Periodate Oxidation of Dimethylformamide in Aqueous Alkaline Medium, Transit. Met. Chem. 19, 215–217 (1994).Google Scholar
  19. 19.
    M. P. Singh and S. Ghosh, Reduction of Bivalent Copper by Glucose in the Presence of Citrate, Z. Phys. Chem. (Leipzig) 204, 1–5 (1955);M. P. Singh and S. Ghosh, Kinetics of Oxidation of Glucose and Fructose by Alkaline Bivalent Copper in the Presence of Citrate: III, Z. Phys. Chem. (Leipzig) 207, 187–197 (1957); M. P. Singh and S. Ghosh, Kinetics of Oxidation of Glucose, Fructose, l-Arabinose and d-Xylose by Alkaline Bivalent Copper in the Presence of Tartarate: IV-Temperature Coefficient and Activation Energy, Z. Phys. Chem. (Leipzig) 207, 198–204 (1957).Google Scholar
  20. 20.
    K. B. Wiberg and W. G. Nigh, The Kinetics of Cupric Ion Oxidation of α-Hydroxyacetophenone, J. Am. Chem. Soc. 87, 3849–3855 (1965).Google Scholar
  21. 21.
    J. K. Kochi, B. M. Graybill, and M. Kwiz, Reactions of Peroxides with Halide Salt-Electrophillic and Homolytic Halogenation, J. Am. Chem. Soc. 86, 5257–5264 (1964).Google Scholar
  22. 22.
    V. N. Singh, M. P. Singh, and B. B. L. Saxena, Kinetics and Mechanism of the Osmium Tetroxide Catalysed Oxidation of Acetone and Ethyl Methyl Ketone by Alkaline Hexacyanoferrate(III) Ion, J. Am. Chem. Soc. 91, 2643–2648 (1969).Google Scholar
  23. 23.
    J. H. Swineheart, The Kinetics of the Hexacyanoferrate(III)–Sulphite Reaction, J. Inorg. Nucl. Chem. 29, 2313–2320 (1967); S. A. Farokhi and S. T. Nandibewoor, Kinetic, Mechanistic and Spectral Studies for the Oxidation of Sulfanilic Acid by Alkaline Hexacyanoferrate(III), Tetrahedron 59, 7595–7602 (2003).Google Scholar
  24. 24.
    S. K. Upadhyay and M. C. Agarwal, Kinetics of Oxidation of Os(VIII)-Catalysed Oxidation of Some α-Aminoacids in Presence of Excess of Ferricyanide, Indian J. Chem. 15A, 709–715 (1977).Google Scholar
  25. 25.
    A. K. Ray and M. N. Das, Ion Association Effects on Rates of Alkaline Hydrolysis of Acetylsalicyalate and Acetylmandelate Ions, J. Chem. Soc. 464–467 (1970).Google Scholar
  26. 26.
    K. J. Laidler, Chemical Kinetics, 3rd edn. (Pearson Education, New Delhi, 2004), p. 191.Google Scholar
  27. 27.
    A. A. Frost and R. G. Pearson, Kinetics and Mechanism, 2nd edn. (Wiley Eastern, New Delhi, 1970), p. 133.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Timy P. Jose
    • 1
  • Sharanappa T. Nandibewoor
    • 2
  • Suresh M. Tuwar
    • 1
  1. 1.Department of ChemistryKarnatak Science CollegeDharwadIndia
  2. 2.Postgraduate Department of Studies in ChemistryKarnatak UniversityDharwadIndia

Personalised recommendations