Advertisement

Journal of Solution Chemistry

, Volume 35, Issue 4, pp 551–566 | Cite as

Buffer Standards for the Physiological pH of the Zwitterionic Compound, TAPS, From 5 to 55 C

  • Lakshmi N. Roy
  • Rabindra N. Roy
  • Cole E. Denton
  • Sean R. LeNoue
  • Curtis A. Himes
  • Sarah J. Richards
  • Ashley N. Simon
  • Chandra N. Roy
  • Vikram S. Somal
Article

Abstract

The values of the second dissociation constant, pK 2, and related thermodynamic quantities of N-[tris(hydroxymethyl)methyl-3-amino]propanesulfonic acid (TAPS) have already been reported at 12 temperatures over the temperature range 5–55 C, including 37 C. This paper reports the results for the pH of five equimolal buffer solutions with compositions: (a) TAPS (0.03 mol⋅kg−1) + NaTAPS (0.03 mol⋅kg−1); (b) TAPS (0.04 mol⋅ kg−1) + NaTAPS (0.04 mol⋅kg−1); (c) TAPS (0.05 mol⋅kg−1) + NaTAPS (0.05 mol⋅kg−1); (d) TAPS (0.06 mol⋅kg−1) + NaTAPS (0.06 mol⋅kg−1); and (d) TAPS (0.08 mol⋅kg−1) + NaTAPS (0.08 mol⋅kg−1). The remaining eight buffer solutions consist of saline media of the ionic strength I = 0.16 mol⋅kg−1, matching closely to that of the physiological sample. The compositions are: (f) TAPS (0.04 mol-kg−1) + NaTAPS (0.02 mol-kg−1) + NaCl (0.14 mol⋅kg−1); (g) TAPS (0.05 mol⋅kg−1) + NaTAPS (0.04 mol⋅kg−1) + NaCl (0.12 mol⋅kg−1); (h) TAPS (0.6 mol⋅kg−1) + NaTAPS (0.04 mol⋅kg−1) + NaCl (0.12 mol⋅kg−1); (i) TAPS (0.08 mol⋅kg−1) + NaTAPS (0.06 mol⋅kg−1) + NaCl (0.10 mol⋅kg−1); (j) TAPS (0.04 mol⋅ kg−1) + NaTAPS (0.04 mol⋅kg−1) + NaCl (0.12 mol⋅kg−1); (k) TAPS (0.05 mol⋅kg−1) + NaTAPS (0.05 mol⋅kg−1) + NaCl (0.11 mol⋅kg−1); (l) TAPS (0.06 mol⋅kg−1) + NaTAPS (0.06 mol⋅kg−1) + NaCl (0.10 mol⋅kg−1); and (m) TAPS (0.08 mol⋅kg−1) + NaTAPS (0.08 mol⋅kg−1) + NaCl (0.08 mol⋅kg−1). These buffers are recommended as a pH standard for clinical measurements in the range of physiological application. Conventional pH values, designated as pH(s), for all 13 buffer solutions from 5 to 55 C have been calculated. The operational pH values with liquid junction corrections, at 25 and 37 C for buffer solutions, designated above as (b), (c), (d), (e), (j), (l), and (m); have been determined based on the difference in the values of the liquid junction potentials between the accepted phosphate standard and the buffer solutions under investigation.

Key Words

Buffers TAPS liquid junction ionic strength emf zwitterions pH acidity function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. N. Roy, L. N. Roy, S. R. LeNoue, C. E. Denton, A. N. Simon, S. J. Richards, A. C. Moore, C. N. Roy, R. R. Redmond, and P. A. Bryant, Thermodynamic Constants of N-[Tris(hydroxymethyl)methyl-3-amino]propanesulfonic Acid (TAPS) from the Temperatures 278.15 K to 328.15 K, J. Chem. Thermodyn. (in press).Google Scholar
  2. 2.
    N. E. Good, G. D. Winget, W. Winter, T. N. Connolly, S. Izawa, and R. M. M. Singh, Hydrogen Ion Buffers for Biological Research, Biochemistry 5, 467–477 (1966).CrossRefGoogle Scholar
  3. 3.
    W. J. Ferguson, K. I. Braunschweiger, W. R. Braunschweiger, J. R. Smith, J. J. McCormick, C. C. Wasmann, N. P. Jarvis, D. H. Bell, and N. E. Good, Hydrogen Ion Buffers for Biological Research, Anal. Biochem. 104, 300–310 (1980).CrossRefGoogle Scholar
  4. 4.
    V. E. Bower, M. Paabo, and R. G. Bates, A Standard for the Measurement of the pH of Blood and Other Physiological Media, J. Res. Natl. Bur. Stand. A 65, 267–270 (1961).Google Scholar
  5. 5.
    R. A. Durst and B. R. Staples, Tris/Tris HC1: Standard Buffer for Use in the Physiological pH Range, Clin. Chem. 18, 206–208 (1972).Google Scholar
  6. 6.
    D. Feng, W. F. Koch, and Y. C. Wu, Second Dissociation Constant and pH of N-(2-Hydroxyethyl)piperazine-N -2-ethanesulfonic Acid from 0 to 50 C, Anal. Chem. 61, 1400–1405 (1989).CrossRefGoogle Scholar
  7. 7.
    Y. C. Wu, P. A. Berezansky, D. Feng, and W. F. Koch, Second Dissociation Constant of 3-(N-Morpholino)-2-hydroxypropanesulfonic Acid and pH of Its Buffer Solutions, Anal. Chem. 65, 1084–1087 (1993).CrossRefGoogle Scholar
  8. 8.
    R. N. Roy, D. R. Mrad, P. A. Lord, J. A. Carlsten, W. S. Good, P. Allsup, L. N. Roy, K. M. Kuhler, W. F. Koch, and Y. C. Wu, Thermodynamics of the Second Dissociation Constant and Standards for pH of 3-(N-Morpholino)propanesulfonic Acid (MOPS) from 5 to 55 C, J. Solution Chem. 27, 73–87 (1998).CrossRefGoogle Scholar
  9. 9.
    R. N. Roy, L. N. Roy, J. G. Grant, M. P. Cummins, B. J. Tabor, S. J. Richards, C. A. Himes, B. R. Lively, P. L. Blackwell, and A. N. Simon, Second Dissociation Constants of 4-[N-Morpholino]butanesulfonic Acid and N-[2-Hydroxyethyl]piperazine-N -4-butanesulfonic Acid from 5 to 55 C, J. Solution Chem. 31, 861–872 (2002).CrossRefGoogle Scholar
  10. 10.
    R. N. Roy, L. N. Roy, A. N. Simon, A. C. Moore, L. A. Seing, S. J. Richards, H. D. Craig, B. A. Childers, B. J. Tabor, C. A. Himes, and K. E. Viele, Thermodynamics of the Second Dissociation Constant of N-Tris[hydroxymethyl]-4-aminobutanesulfonic Acid (TABS) from 5 to 55 C, J. Solution Chem. 33, 351–362 (2004).Google Scholar
  11. 11.
    R. G. Bates, R. N. Roy, and R. A. Robinson, Buffer Standards of Tris (hydroxymethyl)methylglycine (“Tricine”) for the Physiological Range pH 7.2 to 8.5, Anal. Chem. 45, 1663–1666 (1973).Google Scholar
  12. 12.
    R. N. Goldberg, N. Kishore, and R. M. Lennen, Thermodynamic Quantities for the Ionization Reactions of Buffers, J. Phys. Chem. Ref. Data 31, 231–370 (2002).CrossRefGoogle Scholar
  13. 13.
    R. G. Bates, Determination of pH, 2nd edn. (Wiley, New York, 1973), Chap. 4, 10.Google Scholar
  14. 14.
    R. G. Bates, Revised Standard Values for pH Measurements from 0 to 95 C, J. Res. Natl. Bur. Stand. A 66, 179–184 (1962).Google Scholar
  15. 15.
    R. G. Bates and E. A. Guggenheim, Report on the Standardization of pH and Related Terminology, Pure Appl. Chem. 1, 163–168 (1960).Google Scholar
  16. 16.
    Y. C. Wu, D. Feng, and W. F. Koch, Evaluation of Liquid Junction Potentials and Determination of pH Values of Strong Acids at Moderate Ionic Strengths, J. Solution Chem. 18, 641–649 (1989).CrossRefGoogle Scholar
  17. 17.
    W. M. Latimer, Oxidation Potentials, 2nd edn. (Prentice-Hall, New York, 1952).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Lakshmi N. Roy
    • 1
  • Rabindra N. Roy
    • 1
  • Cole E. Denton
    • 1
  • Sean R. LeNoue
    • 1
  • Curtis A. Himes
    • 1
  • Sarah J. Richards
    • 1
  • Ashley N. Simon
    • 1
  • Chandra N. Roy
    • 1
  • Vikram S. Somal
    • 1
  1. 1.Hoffman Department of ChemistryDrury UniversitySpringfieldUSA

Personalised recommendations