Journal of Solution Chemistry

, Volume 35, Issue 3, pp 297–309 | Cite as

Studies on Volumetric Properties of Concentrated Aqueous Solutions of the Ionic Liquid BMIBF4

  • Qing-Guo Zhang
  • Feng Xue
  • Jing Tong
  • Wei Guan
  • Bin Wang


In order to test the mole-fraction composition-based models as applied to aqueous solutions of an ionic liquid, the densities of aqueous 1-methyl-3-butylimidazolium tetrafluoroborate (BMIBF4) were measured using a Westphal balance in the concentration range of about 0.2 to 0.85 mole fraction at temperatures from 283.2 to 323.2 K. Values of the apparent molar volumes of concentrated aqueous BMIBF4 solutions were calculated from these densities and were represented with the Pitzer–Simomson and the Pitzer–Simomson–Clegg equations. The values of Pitzer–Simomson parameters and Pitzer–Simomson–Clegg parameters were obtained by fitting to experimental data with small standard deviations.


Ionic liquid BMIBF4 apparent molar volume Pitzer–Simonson equation Pitzer–Simomson–Clegg equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Wilkes and M. J. Zaworotko, Air and Water Stable 1-Ethyl-3-methylimidazolium Based Ionic Liquids. J. Chem. Soc., Chem. Commun. 965–966 (1992).Google Scholar
  2. 2.
    R. D. Rogers and K. S. Seddon, Ionic Liquids Industrial Applications for Green Chemistry, ACS Symposium Series 818, (ACS, Washington DC, 2002).Google Scholar
  3. 3.
    R. D. Rogers and K. S. Seddon, Ionic Liquids as Green Solvent, ACS Symposium Series 856, Chap. 12. (ACS, Washington DC, 2003).Google Scholar
  4. 4.
    V. Najdanovic-Visak, J. M. S. S. Esperança, L. P. N. Rebelo, M. Nunes da Ponte, H. J. R. Guedes, K. R. Seddon, and J. Szydlowski, Phase Behavior of Room Temperature Ionic Liquid Solution: An Unusually Large Co-solvent Effect in (Water + Ethanol). Phys. Chem. Chem. Phys. 4, 1701–1703 (2002).CrossRefGoogle Scholar
  5. 5.
    J.-Z. Yang, Y. Jin, and W. Pan, Study on Electrochemistry of FeCl3 in Room Temperature Ionic Liquid: BPBF4. Acta Chim. Sinica 62, 1891–1896 (2004).Google Scholar
  6. 6.
    J.-Z. Yang, P. Tian, L.-L He, and W.-G. Xu, Studies on Room Temperature Ionic Liquid InCl3–EMIC. Fluid Phase Equil. 204, 295–302 (2003).CrossRefGoogle Scholar
  7. 7.
    J.-Z. Yang, W.-G. Xu, Q.-G. Zhang, Y. Jin, and Z.-H. Zhang, Thermodynamics of {1-Methyl-3-butylimidazolium Chloride + Iron(III) Chloride}. J. Chem. Thermodyn. 35, 1855–1860 (2003).CrossRefGoogle Scholar
  8. 8.
    J.-Z. Yang, X.-M. Lu, J.-S. Gui, and W.-G. Xu, A New Theory for Ionic Liquids—The Interstice Model Part 1. The Density and Surface Tension of Ionic Liquid EMISE. Green Chem 6, 541–543 (2004).CrossRefGoogle Scholar
  9. 9.
    K. S. Pitzer and J. M. Simonson, Thermodynamics of Multicomponent, Miscible, Ionic System: Theory and Equations. J. Phys. Chem 90, 3005–3009 (1986).CrossRefGoogle Scholar
  10. 10.
    S. L. Clegg and K. S. Pitzer, Thermodynamics of Multicomponent, Miscible, Ionic System: Generalized Equations for Symmetrical Electrolytes. J. Phys. Chem. 96, 3513–3520 (1992).CrossRefGoogle Scholar
  11. 11.
    S. L. Clegg and K. S. Pitzer, and P. Brimblecombe, Thermodynamics of Multicomponent, Miscible, Ionic System. 2. Mixture Including Unsymmetrical Electrolytes. J. Phys. Chem. 96, 9470–9479 (1992).CrossRefGoogle Scholar
  12. 12.
    J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Dialkylimidazolium Chloroaluminate Melts: A New Class of Room-temperature Ionic Liquids for Electrochemistry, Spectroscopy, and Synthesis. Inorg. Chem. 21, 1263–1264 (1982).Google Scholar
  13. 13.
    J. Fuller, R. T. Carlin, and R. A. Osteryoung, The Room-temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate: Electrochemical Couples and Physical Properties. J. Electrochem. Soc. 144, 3881–3885 (1997).CrossRefGoogle Scholar
  14. 14.
    P. A. Z. Suarez, S. Einloft, J. E. Dullius, R. F. de Souza, and J. Dupont, The Use of New Ionic Liquids in Two-phase Catalytic Hydrogenation Reaction by Rhodium Complexes. Polyhedron 15, 1217–1219 (1996).CrossRefGoogle Scholar
  15. 15.
    C. W. Robert and J. A. Melvin, CRC Handbook of Chemistry and Physics, 63rd edition, (CRC Press, New York, 1982), p. 287.Google Scholar
  16. 16.
    H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd edition, (Reinhold, New York, 1958), p. 359.Google Scholar
  17. 17.
    K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, revised edition, K. S. Pitzer, Ed. Chap. 3 (CRC, Boca Raton, 1991).Google Scholar
  18. 18.
    J.-Z. Yang, J. Wang, and H. Li, Thermodynamics of Amino Acid Dissociation in Mixed Solvents. 3. Glycine in Aqueous Glucose Solutions from 5 to 45 C. J. Solution Chem. 21, 1131–1144 (1992).CrossRefGoogle Scholar
  19. 19.
    J.-Z Yang and W.-G. Xu, Medium Effect of an Organic Solvent on the Activity Coefficients of HCl Consistent with Pitzer's Electrolyte Solution Theory. J. Solution Chem. 34, 71–76 (2005).CrossRefGoogle Scholar
  20. 20.
    R. T. Pabalan and K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, 2nd edition, K. S. Pitzer Ed., (CRC Press, Boca Raton, Florida, 1991), pp. 435–490.Google Scholar
  21. 21.
    Y.-G. Li and A. E. Mather, Correlation and Prediction of the Solubility of CO2 and H2S in Aqueous Solutions of Triethanolamine. Ind. Eng. Chem. Res. 35, 4804–4809 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Qing-Guo Zhang
    • 1
    • 2
  • Feng Xue
    • 3
  • Jing Tong
    • 2
    • 3
  • Wei Guan
    • 2
    • 3
  • Bin Wang
    • 3
  1. 1.College of ChemistryBohai UniversityJinzhouP. R. China
  2. 2.The Institute of Salt LakesChinese Academy of ScienceXiningP. R. China
  3. 3.Department of ChemistryLiaoning UniversityShenyangP. R. China

Personalised recommendations