Journal of Solution Chemistry

, Volume 34, Issue 12, pp 1445–1457 | Cite as

Liquid–Liquid Equilibria of Oxygenate Fuel Additives with Water at 298.15 K: Ternary and Quaternary Aqueous Systems of Diisopropyl Ether and Hydrocarbons with 2-Propanol



Experimental tie-line data were determined for one ternary system, water + diisopropyl ether + n-heptane and two quaternary systems, water + diisopropyl ether + 2-propanol + n-heptane or toluene at 298.15 K and ambient pressure. The experimental liquid–liquid equilibrium data were successfully correlated using a modified UNIQUAC model with ternary and quaternary mixture parameters, in addition to the binary ones. The calculated results were also compared with those obtained from an extended UNIQUAC model of Nagata [Fluid Phase Equilib. 54, 191 (1990)].


Ternary and quaternary liquid–liquid equilibria oxygenate fuel additive modified and extended UNIQUAC models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Tamura, Y. Chen, K. Tada, T. Yamada, and I. Nagata, J. Solution Chem. 29, 463 (2000).CrossRefGoogle Scholar
  2. 2.
    I. Nagata, Fluid Phase Equilib. 54, 191 (1990).CrossRefGoogle Scholar
  3. 3.
    V. V. Udovenko and T. F. Mazanko, Zh. Fiz. Khim. 41, 1615 (1967).Google Scholar
  4. 4.
    C. R. Chamorro, J. J. Segovia, M. C. MartÍn, and M. A. Villamañán, J. Chem. Thernodyn. 34, 13 (2002).Google Scholar
  5. 5.
    S. V. Vijayaraghavan, P. K. Deshpande, and N. R. Kuloor, J. Chem. Eng. Data 12, 15 (1967).Google Scholar
  6. 6.
    J. Wisniak, B. Yardeni, T. Sling, and H. Segura, J. Chem. Eng. Data 46, 223 (2001).CrossRefGoogle Scholar
  7. 7.
    R. Barraza and J. Edwards, Monatsh. Chem. 112, 925 (1981).CrossRefGoogle Scholar
  8. 8.
    S. J. Ashcroft, A. D. Claylon, and R. B. Shearn, J. Chem. Eng. Data 24, 195 (1979).CrossRefGoogle Scholar
  9. 9.
    A. Arce, A. Marchiaro, O. Rodriguez, and A. Soto, J. Chem. Eng. Data 47, 529 (2002).CrossRefGoogle Scholar
  10. 10.
    J. M. Sö rensen and W. Arlt, Liquid–Liquid Equilibrium Data Collection, Vol. V, Part 1 (DECHEMA, Frankfurt am Main, 1979), 470 pp.Google Scholar
  11. 11.
    F. Ruiz, D. Prats, and V. Gomis, J. Chem. Eng. Data 30, 412 (1985).CrossRefGoogle Scholar
  12. 12.
    A. Arce, A. Arce Jr., J. MartÍnez-Ageitos, E. Rodil, O. RodrÍguez, and A. Soto, Fluid Phase Equilib. 170, 113 (2000).CrossRefGoogle Scholar
  13. 13.
    E. R. Washburn and A. E. Beguin, J. Am. Chem. Soc. 62, 579 (1940).Google Scholar
  14. 14.
    A. I. Vorobeva and M. K. H. Karapetyants, Zh. Fiz. Khim. 41, 1984 (1967).Google Scholar
  15. 15.
    Z. J. Pan, Y. Chen, Y. H. Dong, R. Q. Li, and Y. Tang, J. Jinan Univ. Nat. Sci. Med. Ed. 25, 609 (2004).Google Scholar
  16. 16.
    J. Gmehling, J. Li, and M. Schiller, Ind. Eng. Chem. Res. 32, 178 (1993).CrossRefGoogle Scholar
  17. 17.
    J. M. Prausnitz, T. F. Anderson, E. A. Grens, C. A. Eckert, R. Hsieh, and J. P. O'Connell, Computer Calculations for Multicomponent Vapor–Liquid and Liquid–Liquid Equilibria (Prentice-Hall, Englewood Cliffs, NJ, 1980).Google Scholar
  18. 18.
    K. Tamura, Y. Chen, and T. Yamada, J. Solution Chem. 30, 291 (2001).CrossRefGoogle Scholar
  19. 19.
    J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic Solvents, 4th edn. (Wiley-Interscience, New York, 1986).Google Scholar
  20. 20.
    C. F. Spencer and R. P. Danner, J. Chem. Eng. Data 17, 236 (1972).CrossRefGoogle Scholar
  21. 21.
    J. G. Hayden and J. P. O'Connell, Ind. Eng. Chem. Process. Des. Dev. 14, 209 (1975).CrossRefGoogle Scholar
  22. 22.
    J. A. Nelder and P. Mead, Comput. J. 7, 308 (1965).Google Scholar
  23. 23.
    E. A. Macedo and P. Rasmussen, Liquid–Liquid Equilibrium Data Collection, Suppl. 1. Vol. V, Part 4 (DECHEMA, Frankfurt am Main, 1987).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of ChemistryJinan UniversityGuangzhouP.R. China

Personalised recommendations