Journal of Solution Chemistry

, Volume 34, Issue 11, pp 1297–1310 | Cite as

Thermodynamic Properties of Peptide Solutions. Part 18. Partial Molar Isentropic Compressibilities of Gly-X-Gly Tripeptides (X = Tyr, Pro, Gln, Asp and Glu), and the Peptide Salts K[GlyAspGly], Na[GlyGluGly] and GlyLysGly Acetate in Aqueous Solution at 25 C

  • Gavin R. Hedwig
  • Harald Høiland


The partial molar isentropic compressibilities at infinite dilution, KS,2, have been determined for several tripeptides of the sequence glycyl-X-glycine, where X is one of the amino acids tyrosine, proline, glutamine, aspartic acid, glutamic acid and lysine in aqueous solution at 25 C. These results, along with those for triglycine, were used to estimate the contributions of the amino acid side-chains to the partial molar isentropic compressibilities of polypeptides. Values for KS,2 have also been determined for aqueous solutions of the two peptide salts K[glyaspgly] and Na[glyglugly]. The KS,2 results for the peptides and their salts have been combined with literature data for electrolytes to calculate the changes in isentropic compressibility upon ionization of the acidic side-chains. The results are compared with those for other carboxylic acid systems.


Partial molar compressibility speed of sound tripeptide side-chain contributions side-chain ionization aqueous solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Schwitzer and G. R. Hedwig, J. Solution Chem. 34, 801 (2005).CrossRefGoogle Scholar
  2. 2.
    G. R. Hedwig and H.-J. Hinz, Biophys. Chem. 100, 239 (2003).CrossRefGoogle Scholar
  3. 3.
    T. V. Chalikian, V. S. Gindikin, and K. J. Breslauer, Biophys. Chem. 75, 57 (1998).CrossRefGoogle Scholar
  4. 4.
    N. Taulier and T. V. Chalikian, Biophys. Chem. 104, 21 (2003).CrossRefGoogle Scholar
  5. 5.
    T. V. Chalikian, D. P. Kharakoz, A. P. Sarvazyan, C. A. Cain, R. J. McGough, I. V. Pogosova, and T. N. Gareginian, J. Phys. Chem. 96, 876 (1992).Google Scholar
  6. 6.
    H. Høiland, in Thermodynamic Data for Biochemistry and Biotechnology, H.-J. Hinz, Ed., Chap. 4 (Springer-Verlag, Berlin, 1986).Google Scholar
  7. 7.
    T. V. Chalikian, Annu. Rev. Biophys. Biomol. Struct. 32, 207 (2003).CrossRefGoogle Scholar
  8. 8.
    B. Nölting, M. Jiang, and S. Sligar, J. Am. Chem. Soc. 115, 9879 (1993).Google Scholar
  9. 9.
    T. V. Chalikian and K. J. Beslauer, Proc. Natl. Acad. Sci. USA 93, 1012 (1996).CrossRefGoogle Scholar
  10. 10.
    D. P. Kharakoz and V. E. Bychkova, Biochemistry 36, 1882 (1997).Google Scholar
  11. 11.
    K. Sasahara, M. Sakurai, and K. Nitta, J. Mol. Biol. 291, 693 (1999).CrossRefGoogle Scholar
  12. 12.
    G. R. Hedwig and H. Høiland, Biophys. Chem. 49, 175 (1994).CrossRefGoogle Scholar
  13. 13.
    G. R. Hedwig and H. Høiland, J. Chem. Thermodyn. 25, 349 (1993).Google Scholar
  14. 14.
    G. R. Hedwig and H. Høiland, Phys. Chem. Chem. Phys. 6, 2440 (2004).Google Scholar
  15. 15.
    J. L. Liu, A. W. Hakin, and G. R. Hedwig, J. Solution Chem. 30, 861 (2001).CrossRefGoogle Scholar
  16. 16.
    M. A. Schwitzer and G. R. Hedwig, J. Chem. Eng. Data 43, 477 (1998).CrossRefGoogle Scholar
  17. 17.
    E. P. Papadakis, J. Acoust. Soc. Am. 52, 843 (1972).Google Scholar
  18. 18.
    G. Horváth-Szabó, H. Høiland, and E. Høgseth, Rev. Sci. Instrum. 65, 1644 (1994).Google Scholar
  19. 19.
    E. Høgseth, G. Hedwig, and H. Høiland, Rev. Sci. Instrum. 71, 4679 (2000).Google Scholar
  20. 20.
    G. S. Kell, J. Chem. Eng. Data 12, 66 (1967).CrossRefGoogle Scholar
  21. 21.
    V. A. Del Grosso and C. W. Mader, J. Acoust. Soc. Am. 52, 1442 (1972).Google Scholar
  22. 22.
    G. R. Hedwig and H. Høiland, J. Solution Chem. 20, 1113 (1991).CrossRefGoogle Scholar
  23. 23.
    J. I. Langford, W. T. Holladay, and C. M. Criss, J. Solution Chem. 13, 699 (1984).Google Scholar
  24. 24.
    F. J. Millero, G. K. Ward, and P. V. Chetirkin, J. Acoust. Soc. Am. 61, 1492 (1977).CrossRefGoogle Scholar
  25. 25.
    J. G. Mathieson and B. E. Conway, J. Chem. Soc., Faraday Trans. 70, 752 (1974).Google Scholar
  26. 26.
    M. Sakurai, T. Komatsu, and T. Nakagawa, Bull. Chem. Soc. Jpn. 54, 643 (1981).Google Scholar
  27. 27.
    J. P. Hershey, R. Damesceno, and F. J. Millero, J. Solution Chem. 13, 825 (1984).CrossRefGoogle Scholar
  28. 28.
    J. G. Mathieson and B. E. Conway, J. Solution Chem. 3, 455 (1974).CrossRefGoogle Scholar
  29. 29.
    F. J. Millero, A. Lo Surdo, and C. Shin, J. Phys. Chem. 82, 784 (1978).CrossRefGoogle Scholar
  30. 30.
    D. P. Kharakoz, J. Phys. Chem. 95, 5634 (1991).CrossRefGoogle Scholar
  31. 31.
    M. Kikuchi, M. Sakurai, and K. Nitta, J. Chem. Eng. Data 40, 935 (1995).CrossRefGoogle Scholar
  32. 32.
    Y. Yasuda, N. Tochio, M. Sakurai, and K. Nitta, J. Chem. Eng. Data 43, 205 (1998).CrossRefGoogle Scholar
  33. 33.
    D. P. Kharakoz, Biochemistry 36, 10276 (1997).Google Scholar
  34. 34.
    M. Iqbal and R. E. Verrall, J. Biol. Chem. 263, 4159 (1988).Google Scholar
  35. 35.
    A. W. Hakin and G. R. Hedwig, Phys. Chem. Chem. Phys. 2, 1795 (2000).Google Scholar
  36. 36.
    H. Høiland and E. Vikingstad, J. Chem. Soc., Faraday Trans. 72, 1441 (1976).Google Scholar
  37. 37.
    G. D. Noudeh, N. Taulier, and T. V. Chalikian, Biopolymers 70, 563 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institute of Fundamental Sciences–ChemistryMassey UniversityPalmerston NorthNew Zealand
  2. 2.Department of ChemistryUniversity of BergenBergenNorway

Personalised recommendations