Advertisement

Journal of Solution Chemistry

, Volume 34, Issue 9, pp 1017–1031 | Cite as

The System HCl + NdCl3 + H2O from 5 to 55 C: A Study of Harned's Rule

  • Rabindra N. Roy
  • Lakshmi N. Roy
  • Curtis A. Himes
  • Sarah J. Richards
  • Sean R. LeNoue
  • Cole E. Denton
  • Marie J. Pesek
  • Chandra N. Roy
  • Neha Sangoi
  • Stephanie N. Gibbs
  • Richard D. Shaffer
Article

Abstract

The activity coefficients of HCl (γ A ) in aqueous mixtures of HCl and NdCl3 were determined by the electromotive-force (emf) measurement of cells without liquid junctions of the type:
$${\rm Pt},{\rm H}_{2} ({\rm g},1 {\rm atm})|{\rm HCl}(m_{\rm A}) + {\rm NdCl}_{3} (m_{\rm B}) + {\rm H}_{2} {\rm O}|{\rm AgCl},{\rm Ag}$$
(A)

The experiments were carried out at nine constant total ionic strengths of I = 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, and 2.0 mol-kg−1, and at 11 temperatures from 5 to 55 C, but at I = 2.0 mol-kg−1 the experimental temperatures were 5, 25 and 55 C only. Harned's rule was used to represent all 728 experimental emf data points at the experimental ionic strengths and temperatures. The quadratic terms in the Harned equations for the values of logγ A were required for a good fit to the emf data, indicating the significance of ternary interactions at the experimental ionic strengths. The adjoining paper deals with the application of the Pitzer ion-interaction theory to estimate the Pitzer's mixing parameters for binary and ternary interactions.

Keywords

Activity coefficient emf Harned's rule mixtures ion interactions hydrochloric acid neodymium chloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Robinson, R. N. Roy, and R. G. Bates, J. Solution Chem. 74, 837 (1974).CrossRefGoogle Scholar
  2. 2.
    R. N. Roy, C. P. Moore, M. N. White, L. N. Roy, K. M. Vogel, D. A. Johnson, and F. J. Millero, J. Phys. Chem. 96, 402 (1992).Google Scholar
  3. 3.
    R. N. Roy, S. A. Rice, K. M. Vogel, L. N. Roy, and F. J. Millero, J. Phys. Chem. 94, 7706 (1990).CrossRefGoogle Scholar
  4. 4.
    R. N. Roy, J. J. Gibbons, L. K. Ovens, G. A. Bliss, and J. J. Hartley, J. Chem. Soc. Faraday Trans. 1, 78, 1405 (1981).CrossRefGoogle Scholar
  5. 5.
    J. N. Butler and R. N. Roy, Activity Coefficients in Electrolyte Solutions (CRC, Boca Raton, FL, 1991), Chap. 4, p. 155.Google Scholar
  6. 6.
    R. N. Roy, J. J. Gibbons, J. C. Peiper, and K. S. Pitzer, J. Phys. Chem. 87, 2365 (1983).CrossRefGoogle Scholar
  7. 7.
    H. S. Harned and R. Gary, J. Am. Chem. Soc. 77, 4695 (1955).CrossRefGoogle Scholar
  8. 8.
    L. N. Roy, T. M. Beasley, K. M. Kuhler, J. K. Bice, W. S. Good, R. N. Roy, and K. S. Pitzer, J. Solution Chem. 25, 1241 (1996).CrossRefGoogle Scholar
  9. 9.
    K. S. Pitzer, R. N. Roy, and P. Wang, J. Phys. Chem. 101, 4120 (1997).Google Scholar
  10. 10.
    H. L. Friedman, Ionic Solution Theory (Wiley Interscience, New York, 1962).Google Scholar
  11. 11.
    K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).CrossRefGoogle Scholar
  12. 12.
    K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300 (1973).CrossRefGoogle Scholar
  13. 13.
    K. S. Pitzer and J. J. Kim, J. Am. Chem. Soc. 96, 5701 (1974).CrossRefGoogle Scholar
  14. 14.
    K. S. Pitzer, Activity Coefficients in Electrolyte Solutions (CRC, Boca Raton, FL, 1991), Chap. 3, p. 75.Google Scholar
  15. 15.
    G. Scatchard, J. Am. Chem. Soc. 91, 2410 (1969).CrossRefGoogle Scholar
  16. 16.
    G. Scatchard, R. M. Rush, and J. J. Johnson, J. Phys. Chem. 74, 3786 (1970).CrossRefGoogle Scholar
  17. 17.
    F. J. Millero and D. Schreiber, Am. J. Sci. 282, 1508 (1982).Google Scholar
  18. 18.
    R. G. Bates, Determination of pH, 2nd edn. (Wiley, New York, 1973), p. 283, 331.Google Scholar
  19. 19.
    R. G. Bates, NBS Tech. Note (U.S.), No. 271, 18 (1965).Google Scholar
  20. 20.
    R. Gary, R. G. Bates, and R. A. Robinson, J. Phys. Chem. 68, 1168 (1964).Google Scholar
  21. 21.
    R. G. Bates, E. A. Guggenheim, H. S. Harned, D. J. G. Ives, G. J. Janz, C. B. Monk, J. E. Prue, R. A. Robinson, R. H. Stokes, and W. F. K. Wynne-Jones, J. Chem. Phys. 25, 361 (1956); 26, 222 (1957).Google Scholar
  22. 22.
    H. S. Harned and R. A. Robinson, Multicomponent Electrolyte Solutions (Pergamon, Oxford, 1968), p. 60.Google Scholar
  23. 23.
    H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions (Reinhold, New York, 1958), p. 716.Google Scholar
  24. 24.
    R. N. Roy, L. N. Roy, B. J. Tabor, C. A. Himes, S. J. Richards, M. P. Cummins, E. B. Christiansen, C. N. Roy, V. K. Sharma, and F. J. Millero, J. Solution Chem. 34, 1031 (2005).Google Scholar
  25. 25.
    R. N. Roy, L. N. Roy, D. R. Gregory, S. A. Kiefer, B. Das, and K. S. Pitzer, J. Solution Chem. 28, 933 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Rabindra N. Roy
    • 1
  • Lakshmi N. Roy
    • 1
  • Curtis A. Himes
    • 1
  • Sarah J. Richards
    • 1
  • Sean R. LeNoue
    • 1
  • Cole E. Denton
    • 1
  • Marie J. Pesek
    • 1
  • Chandra N. Roy
    • 1
  • Neha Sangoi
    • 1
  • Stephanie N. Gibbs
    • 1
  • Richard D. Shaffer
    • 1
  1. 1.Hoffman Department of ChemistryDrury UniversitySpringfield

Personalised recommendations