Journal of Solution Chemistry

, Volume 34, Issue 8, pp 899–915 | Cite as

Vanadium(III) Complexes with Picolinic Acid and Dipicolinic Acid in Aqueous Solution

  • Vito Lubes


The complex species formed in aqueous solution (25 C, I = 3.0 mol-dm−3 KCl ionic medium) between V3+ cation and the ligands: picolinic acid (Hpic, HL) and dipicolinic acid (H2dipic, H2L), have been studied potentiometrically and by spectrophotometric measurements. The application of the least-squares computer program LETAGROP to the experimental emf (H) data, taking into account the hydrolytic species of V3+ ion, indicates that under the employed experimental conditions, the formation of the complexes [VL]2+, [V(OH)L]+, [VL2]+, [VL3], [V2OL4] with picolinic acid and the complexes [VL]+, [V(OH)L], [V(OH)2L], [V(HL)(L)], and [VL2] with dipicolinic acid were observed. The stability constants of the complexes formed were determined by potentiometric measurements, and spectrophotometric measurements were done in order to perform a qualitative characterization of the complexes formed in aqueous solution.


Vanadium(III) complexes solution equilibria potentiometric studies stability constants speciation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. A. Idriss, M. S. Saleh, H. Sedaira, M. M. Seleim, and E. Y. Hashem, Monatsh. Chem. 122, 507 (1991).CrossRefGoogle Scholar
  2. 2.
    C. G. Pope, E. Matijecic, and R. C. Pate, J. Colloid Interface Sci. 80, 74 (1981).CrossRefGoogle Scholar
  3. 3.
    A. M. Lannon, A. G. Lappin, and M. G. Segal, Inorg. Chem. 23, 4167 (1984).CrossRefGoogle Scholar
  4. 4.
  5. 5.
    R. A. Anderson, Diabetes Metab. 26, 22 (2000).PubMedGoogle Scholar
  6. 6.
    T. E. Erikson, I. Grenthe, and I. Puigdomenech, Inorg. Chim. Acta. 126, 131 (1987); Y. Ducommun, L. Helm, G. Laurenezy, and A. Merbach, Inorg. Chim. Acta. 158, 3 (1989).CrossRefGoogle Scholar
  7. 7.
    M. Chatterjee, M. Maji, S. Ghosh, and T. C. W. Mak, J. Chem. Soc., Dalton Trans. 3641 (1998).Google Scholar
  8. 8.
    R. C. Mercier and M. R. Pâris, Bull. Soc. Chim. France 3577 (1965).Google Scholar
  9. 9.
    M. Chatterjee, S. Ghosh, and A. K. Nandi, Polyhedron 16, 2917 (1997).CrossRefGoogle Scholar
  10. 10.
    M. Melchior, S. J. Rettig, B. D. Liboiron, K. H. Thompson, V. G. Yuen, J. H. McNeill, and C. Orvig, Inorg. Chem. 40, 4686 (2001).CrossRefPubMedGoogle Scholar
  11. 11.
    K. H. Thompson and C. Orvig, Coord. Chem. Rev. 219–221, 1033 (2001).CrossRefGoogle Scholar
  12. 12.
    M. Melchior, K. H. Thompson, J. M. Jong, S. J. Rettig, E. Shuter, V. G. Yuen, Y. Zhou, J. H. McNeill, and C. Orvig, Inorg. Chem. 38, 2288 (1999).CrossRefGoogle Scholar
  13. 13.
    A. E. Martell, M. Smith, and R. J. Motekaitis, NIST Critical Stability Constants of Metal Complexes Database (US Department of Commerce, Gaithersburg, MD, 1993); K. J. Powell and L. D. Pettit, IUPAC Stability Constants Database (Academic Software, Otley, UK, 1997).Google Scholar
  14. 14.
    F. Brito, An. Fis. Quím. B 62, 193 (1966).Google Scholar
  15. 15.
    S. Mateo and F. Brito, An. Fis. Quím. B 64, 115 (1968).Google Scholar
  16. 16.
    F. Brito and J. M. Goncalves, An. Fis. Quím. 78, 104 (1982).Google Scholar
  17. 17.
    G. Biedermann and L. G. Sillén, Arkiv Kemi 5, 425 (1952).Google Scholar
  18. 18.
    V. Lubes, Complejos de V(III) y los Ácidos Aminopolicarboxílicos NDAP, NADP y NTP (25°C, KCl 3.0 M), Tesis de Licenciatura, Facultad de Ciencias, UCV, 1997.Google Scholar
  19. 19.
    F. Brito and J. Goncalves, Proyecto no S1-1228 (CONICIT. Caracas, Venezuela, 1981).Google Scholar
  20. 20.
    R. Arnek, L. G. Sillén, and B. Warnqvist, Arkiv Kemi 31, 341 (1969).Google Scholar
  21. 21.
    L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini, and A. Vacca, Coord. Chem. Rev. 184, 311 (1999).CrossRefGoogle Scholar
  22. 22.
    S. Funahashi, K. Haraguchi, and M. Tanaka, Inorg. Chem. 16, 1349 (1977).CrossRefGoogle Scholar
  23. 23.
    B. Szpoganicz and A. Martell, Inorg. Chem. 23, 4442 (1984).CrossRefGoogle Scholar
  24. 24.
    D. C. Crans, J. J. Smee, E. Gaidamauskas, and L. Yang, Chem. Rev. 104, 849 (2004).CrossRefPubMedGoogle Scholar
  25. 25.
    K. Kanamori, Coord. Chem. Rev. 237, 147 (2003).Google Scholar
  26. 26.
    S. G. Brand, N. Edelstein, C. J. Hawkins, G. Shalimo, M. R. Snow, and R. T. Tiekink, Inorg. Chem. 29, 434 (1990).CrossRefGoogle Scholar
  27. 27.
    H. Kumagai, S. Kitagawa, M. Maekawa, S. Kawata, H. Kiso, and M. Munakata, J. Chem. Soc., Dalton Trans. 2390 (2002).Google Scholar
  28. 28.
    J. Piispanen and L. H. J. Lajunen, Acta Chem. Scand. 50, 1074 (1996).Google Scholar
  29. 29.
    K. Kanamori, M. Teraoka, H. Maeda, and K. Okamoto, Chem. Lett. 1731 (1993).Google Scholar
  30. 30.
    K. Bukietynska, Z. Karwecka, and H. Podsiadly, Polyhedron 16, 2613 (1997).CrossRefGoogle Scholar
  31. 31.
    K. Kanmori, E. Kameda, T. Kabetani, T. Suemoto, K. Okamoto, and S. Kaizaki, Bull. Chem. Soc. Jpn. 68, 2581 (1995).Google Scholar
  32. 32.
    H. Maeda, K. Kanamori, H. Michibata, T. Cono, K. Okamoto, and J. Hidaka, Bull. Chem. Soc. Jpn. 66, 790 (1993).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departamento de QuímicaUniversidad Simón Bolívar (USB)Venezuela

Personalised recommendations