Journal of Solution Chemistry

, Volume 34, Issue 4, pp 443–468 | Cite as

A Spectroscopic Study of the Dissolution of Cesium Phosphomolybdate and Zirconium Molybdate by Ammonium Carbamate

  • Jun Jiang
  • Iain May
  • Mark J. Sarsfield
  • Mark Ogden
  • Danny O. Fox
  • Chris J. Jones
  • Philip Mayhew


Through a combination of Raman spectroscopy, multi-element NMR spectroscopy and chemical analysis, the differences between the action of carbonate and carbamate as agents for dissolving Cs3PMo12O40xH2O(s) (CPM) and ZrMO2O7(OH)2(H2O)2(s) (ZM) have been elucidated. Alkaline H2NCO2/HCO3/CO32− solutions, derived from the dissolution of ammonium carbamate (NH4H2NCO2; AC), dissolve CPM by base hydrolysis of the PMo12O403− Keggin anion, ultimately forming [MoO4]2− and PO43− when excess base is present. If the initial concentration of H2NCO2/HCO3/ CO32− is lowered, base hydrolysis is incomplete and the dissolved species include [Mo7O24]6− and [P2Mo5O23]6−, and undissolved solid Cs3PMo12O40, Cs x NH7− x PMo11O39, and Cs x NH6− x Mo7O24 remain. Na2CO3 solutions dissolve Cs3PMo12O40 through a similar mechanism, but the dissolution rate is much lower. We attribute this difference to the different buffering effects of H2NCO2/HCO3/CO32− and CO32−/HCO3 solutions, and the instability of carbamic acid, the protonated form of H2NCO2 (which rapidly decomposes into NH3 and CO2). The ability of NH3 to produce NH4+ and OH, together with the evolution of CO2 gas, drive the reaction forward. Low temperature measurements under conditions where pure H2NCO2 is kinetically stable, allowed the rates of dissolution of CPM by H2NCO2 and CO32− to be compared directly, confirming the faster dissolution by H2NCO2. Compared to CPM, the dissolution of ZM by H2NCO2/HCO3/CO32− is a much slower process and is driven by the formation of soluble Zr IV -carbonate complexes and MoO42−. The driving force for the dissolution of ZM is the superior complexing ability of carbonate over carbamate; consequently solutions containing a higher carbonate concentration dissolve ZM faster.

Key Words

Cesium phosphomolybdate zirconium molybdate ammonium carbamate sosium carbonate dissolution kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. J. Doucet, D. T. Goddard, C. M. Taylar, I. Denniss, S. M. Hutchison, and N. D. Bryan, Phys. Chem. Chem. Phys. 4, 3491 (2002).CrossRefGoogle Scholar
  2. 2.
    B. S. M. Rao, E. Gantner, H. G. Müller, J. Reinhardt, D. Steinert, and H. J. Ache, Appl. Spectrosc. 40, 330 (1986).Google Scholar
  3. 3.
    K. M. Kay, A. H. Moss, C. D. Poyner, and T. R. Ward, BNFL R &T Report, RDR 1056 (1997).Google Scholar
  4. 4.
    G. G. Burrows and G. N. Lewis, J. Am. Chem. Soc. 34, 993 (1912).CrossRefGoogle Scholar
  5. 5.
    T. R. Briggs and V. Migrdichian, J. Phys. Chem. 28, 1121 (1924).CrossRefGoogle Scholar
  6. 6.
    F. Christensson, H. C. S. Koefoed, A. C. Petersen, and K. Rasmussen, Acta Chem. Scand. A32, 15 (1978).Google Scholar
  7. 7.
    B. R. Ramachandran, A. M. Halpern, and E. D. Glendening, J. Phys. Chem. A 102, 3934 (1998).Google Scholar
  8. 8.
    R. K. Khanna and M. H. Moore, Spectrochim. Acta A 55, 961 (1999).Google Scholar
  9. 9.
    N. Wen and M. H. Brooker, J. Phys. Chem. 99, 359 (1995).Google Scholar
  10. 10.
    M. T. Pope, Heteropoly and Isopoly Oxometallates, Inorganic Chemistry Concepts 8 (Springer Verlag, Berlin, 1983).Google Scholar
  11. 11.
    G. A. Tsigdinos, Top. Curr. Chem. 76 (1978); Aspect of Molybdenum and Related Chemistry (Springer Verlag, Berlin, 1978).Google Scholar
  12. 12.
    M. T. Pope, Chem. Rev. 98, 1 (1998).PubMedGoogle Scholar
  13. 13.
    P. Souchay and J. Faucherre, Bull. Soc. Chim. Fr. 18, 355 (1951).Google Scholar
  14. 14.
    L. Pettersson, I. Andersson, and L.-O. Öhman, Inorg. Chem. 25, 4726 (1986).Google Scholar
  15. 15.
    L. Pettersson, I. Andersson, and L.-O. Öhman, Acta Chem. Scand., Ser. A39, 53 (1985).Google Scholar
  16. 16.
    J. A. Rob van Veen, O. Sudmeijer, C. A. Emeis, and H. de Wit, J. Chem. Soc. Dalton Trans. 1825 (1986).Google Scholar
  17. 17.
    A. Clearfield and R. H. Blessing, J. Inorg. Nucl. Chem. 34, 2643 (1972).Google Scholar
  18. 18.
    B. S. M. Rao and H. J. Ache, Anal. Raman Spectrosc. 54, 1203 (1985).Google Scholar
  19. 19.
    B. S. M. Rao, E. Gantner, J. Reinhardt, D. Steinert, and H. J. Ache, J. Nucl. Mater. 170, 39 (1990).Google Scholar
  20. 20.
    A. Veyland, L. Dupont, J. Rimbault, J. Pierrard, and M. Aplincourt, Helv. Chim. Acta 83, 414 (2000).Google Scholar
  21. 21.
    C. Rocchiccioli-Deltcheff, M. Fournier, R. Franck, and R. Thouvenot, Inorg. Chem. 22, 207 (1983).Google Scholar
  22. 22.
    R. Thouvenot, M. Fournier, R. Franck, and C. Rocchiccioli-Deltcheff, Inorg. Chem. 23, 598 (1984).Google Scholar
  23. 23.
    A. J. Gaunt, PhD Thesis (The University of Manchester, 2002), pp. 92–148.Google Scholar
  24. 24.
    A. J. Gaunt, I. May, M. J. Sarsfield, D. Collison, M. Helliwell, and I. Denniss, J. Chem. Soc. Dalton Trans. 2767 (2003).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jun Jiang
    • 1
  • Iain May
    • 1
  • Mark J. Sarsfield
    • 1
  • Mark Ogden
    • 1
  • Danny O. Fox
    • 1
  • Chris J. Jones
    • 2
  • Philip Mayhew
    • 2
  1. 1.Centre for Radiochemistry Research, School of ChemistryThe University of ManchesterManchesterUnited Kingdom
  2. 2.Naxio SolutionsSellafieldUnited Kingdom

Personalised recommendations