Journal of Solution Chemistry

, Volume 34, Issue 7, pp 789–800 | Cite as

The Association Constants of H + and Ca 2 + with 2-Keto-D-Gluconate in Aqueous Solutions

  • Julia B. Nelson
  • Michael E. Essington


2-Keto-D-gluconate (kG) is naturally produced in soils, sediments and rock faces through the microbial oxidation of glucose. Studies have qualitatively shown kG to enhance the dissolution of soil minerals. However, quantitative information, such as the log K values for the formation of metal–kG complexes, are not available. This paper presents the results of potentiometric titration studies that employ H+ and Ca2+ ion selective electrodes (ISEs) to determine the conditional ion association constants (log Q values) for the protonation and deprotonation of kG and the formation of Ca–kG complexes. The experimentally-determined log Q values were then converted to the corresponding ion association constants (the zero ionic strength condition; log K values) by employing a modified Davies equation for charged species and the Setchenów equation for neutral species. The log K values were determined by potentiometric titrations at constant kG concentration, varied ionic strengths, 25 or 22 C, and in the absence of CO2. The computer model GEOCHEM-PC was used to determine the aqueous speciation of ions other than kG and the computer model FITEQL was used to estimate conditional log Q values for reactions in the various chemical models. Based on our evaluations, equilibrium constants for the following reactions were determined: H++ kG ⇌ HkG0, log Ka1 = (3.00 ± 0.06), kG⇌ H–1kG2–+ H+, log Ka–1 = –(11.97 ± 0.41), and Ca2++ kG⇌ CakG+, log K101 = (1.74 ± 0.04).


Acidity ion pairs ionic complexes potentiometry microbial exudate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. M. Huang and A. Violante, in Interactions of Soil Minerals With Natural Organics and Microbes, P. M. Huang and M. Schnitzer, eds. (SSSA Special Publication No. 17, SSSA, Madison, WI, 1986), pp. 159–221.Google Scholar
  2. 2.
    J. S. Geelhoed, T. Hiemstra, and W. H. Van Riemsdijk, Environ. Sci. Technol. 32, 2119 (1998).CrossRefGoogle Scholar
  3. 3.
    M. Grafe, M. J. Eick, P. R. Grossl, and A. M. Sanders, J. Environ. Qual. 31, 1115 (2002).PubMedGoogle Scholar
  4. 4.
    U. Kafkafi, B. Bar-Yosef, R. Rosenberg, and G. Sposito, Soil Sci. Soc. Am. J. 52, 1585 (1988).Google Scholar
  5. 5.
    H. Wijnja and C. P. Schulthess, Soil Sci. Soc. Am. J. 64, 898 (2000).Google Scholar
  6. 6.
    H. L. Yao and H. H. Yeh, Langmuir 12, 2981 (1996).CrossRefGoogle Scholar
  7. 7.
    T. R. Fox, N. B. Comerford, and W. W. McFee, Soil Sci. Soc. Am. J. 54, 1763 (1990).Google Scholar
  8. 8.
    W. P. Inskeep and J. C. Silvertooth, Soil Sci. Soc. Am. J. 52, 941 (1988).Google Scholar
  9. 9.
    K. Inoue and P. M. Huang, Soil Sci. Soc. Am. J. 50, 1623 (1986).Google Scholar
  10. 10.
    D. L. Jones, Plant Soil 205, 25 (1998).CrossRefGoogle Scholar
  11. 11.
    R. B. Duff, D. M. Webley, and R. O. Scott, Soil Sci. 95, 105 (1963).Google Scholar
  12. 12.
    A. Moghimi, M. E. Tate, and J. M. Oades, Soil Biol. Biochem. 10, 283 (1978).CrossRefGoogle Scholar
  13. 13.
    G. F. Vance, F. J. Stevenson, and F. J. Sikora, in The Environmental Chemistry of Aluminum, G. Sposito, ed. (Lewis, Boca Raton, FL, 1995), pp. 169–220.Google Scholar
  14. 14.
    S. Banik and B. K. Dey, Zbl. Mikrobiol. 138, 437 (1983).Google Scholar
  15. 15.
    T. Chiyonobu, O. Adachi, and M. Ameyama, Agric. Biol. Chem. 37, 2871 (1973).Google Scholar
  16. 16.
    H. L. Erlich, in Geomicrobiology, H. L. Ehrlich, ed. (Marcel Dekker, New York, 1981), pp. 131–135.Google Scholar
  17. 17.
    A. K. Halder and P. K. Chakrabartty, Folia Microbiol. 38, 325 (1993).Google Scholar
  18. 18.
    R. Klasen, S. Bringer-Meyer, and H. Sahm, Biotechnol. Bioeng. 40, 183 (1992).CrossRefGoogle Scholar
  19. 19.
    R. M. N. Kucey, H. H. Janzen, and M. E. Leggett, Adv. Agron. 42, 199 (1989).Google Scholar
  20. 20.
    O. M. Neijssel and D. W. Tempest, Arch. Microbiol. 105, 183 (1975).CrossRefPubMedGoogle Scholar
  21. 21.
    J. R. Sokatch, Bacterial Physiology and Metabolism (Academic, London, 1969), pp.117–119.Google Scholar
  22. 22.
    D. M. Webley and R. B. Duff, Plant Soil 22, 307 (1965).CrossRefGoogle Scholar
  23. 23.
    A. Moghimi, M. E. Tate, and J. M. Oades, Soil Biol. Biochem. 10, 283 (1978).CrossRefGoogle Scholar
  24. 24.
    M. E. Essington, J. B. Nelson, and W. L. Holden, Soil Sci. Soc. Am. J. 69 (2005).Google Scholar
  25. 25.
    A. Moghimi and M. E. Tate, Soil Biol. Biochem. 10, 289 (1978).CrossRefGoogle Scholar
  26. 26.
    P. A. W. van Hees, U. S. Lundström, and R. Giesler, Geoderma 94, 173 (2000).CrossRefGoogle Scholar
  27. 27.
    B. W. Strobel, Geoderma 99, 169 (2001).CrossRefGoogle Scholar
  28. 28.
    A. E. Martell and R. E. Smith, Critical Stability Constants, Vol. 3 (Plenum, New York, 1977).Google Scholar
  29. 29.
    R. J. Motekaitis and A. E. Martell, Inorg. Chem. 23, 18 (1984).CrossRefGoogle Scholar
  30. 30.
    W. L. Holden, The Solubilization of Phosphates in the Presence of Organic Acids, MS. Thesis (The University of Tennessee, Knoxville, 1996).Google Scholar
  31. 31.
    R. B. Duff and D. M. Webley, Chem. Ind. Lond. 1959, 1376 (1959).Google Scholar
  32. 32.
    J. D. Wolt, Soil Solution Chemistry: Applications to Environmental Science and Agriculture (Wiley, New York, 1994).Google Scholar
  33. 33.
    M. E. Essington, Soil and Water Chemistry: An Integrative Approach (CRC, Boca Raton, FL, 2003)Google Scholar
  34. 34.
    M. E. Essington, Soil Sci. Soc. Am. J. 56, 1124 (1992).Google Scholar
  35. 35.
    A. L. Herbelin and J. C. Westall, FITEQL; A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data, Version 4.0 (Oregon State University, Corvallis, Report 99-01, 1999).Google Scholar
  36. 36.
    D. R. Parker, W. A. Norvell, and R. L. Chaney, in Chemical Equilibrium and Reaction Models, R. H. Loeppert et al., eds. (SSSA Special Publication No. 42, SSSA, Madison, WI, 1995), pp. 253–269.Google Scholar
  37. 37.
    W. Stumm and J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. (Wiley, New York, 1996).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Environmental and Soil Sciences Group, Institute of AgricultureThe University of TennesseeKnoxville

Personalised recommendations