Journal of Solution Chemistry

, Volume 34, Issue 7, pp 739–753 | Cite as

Thermodynamic Aspects of Metal–Ion Complexation in the Structured Solvent, N-Methylformamide

  • Kenta Fujii
  • Yasuhiro Umebayashi
  • Ryo Kanzaki
  • Daisuke Kobayashi
  • Ryoko Matsuura
  • Shin-ichi Ishiguro


Chloride complexation of cobalt(II), nickel(II) and zinc(II) ions has been studied by calorimetry and spectrophotometry in N-methylformamide (NMF) containing 1.0 mol-dm− 3 (n-C4H9)4NClO4 as an ionic medium at 298 K. A series of mononuclear complexes, MCl n (2 -n) + (M=Co, Ni and Zn) with n = 1, 3 and 4 for cobalt(II), n = 1 for nickel(II), and n = 1–4 for zinc(II), are formed and their formation constants, enthalpies and entropies were obtained. It revealed that complexation is suppressed significantly in NMF relative to that in N,N-dimethylformamide (DMF) in all metal systems examined. The suppressed complexation in NMF is mainly ascribed to the smaller formation entropies in NMF reflecting that the solvent–solvent interaction or solvent structure in the bulk NMF is much stronger than that in the bulk DMF. Formation entropies, Δ S1o, of the monochloro complex in DMF, dimethyl sulfoxide and NMF are well correlated with the Marcus’ solvent parameter, Δ Δv So/R, according to Δ S1o/R = aΔ Δv So/R+b. The a value is negative and similar in all metal systems examined, whereas the b value depends on the metal system. When a gaseous ion is introduced into a solvent, the ionic process of solvation is divided into two stages: the ion destroys the bulk solvent structure to isolate solvent molecules at the first stage and the ion then coordinates a part of isolated solvent molecules around it at the second stage. We propose that the a and b values may reflect the changes in the freedom of motion of solvent molecules at the first and second stages, respectively, of the ionic process of solvation.


Formation thermodynamics transition metal(II) ions chloro complexes N-methylformamide calorimetry spectrophotometry solvent structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Burger, Solvation, Ionic, and Complex Formation Reactions in Non-Aqueous Solvents: Experimental Methods for Their Investigation (Elseviour Science, Amsterdom, 1983).Google Scholar
  2. 2.
    J. Burgess, Ions in Solution 2nd Ed. (Horwood, Chichester, UK, 1999).Google Scholar
  3. 3.
    G. Mamantov and A. I. Popov, Chemistry of Nonaqueous Solutions (VCH, New York, 1994).Google Scholar
  4. 4.
    a) V. Gutmann and E. Wychera, Inorg. Nucl. Chem. Lett. 2, 257 (1966); b) V. Gutmann, Coordination Chemistry in Nonaqueous Solutions (Springer-Verlag, New York, 1968).Google Scholar
  5. 5.
    U. Mayer, V. Gutmann, and W. Gerger, Mh. Chem. 106, 1235 (1975).Google Scholar
  6. 6.
    S. Ishiguro, H. Suzuki, B. G. Jeliazkova, and H. Ohtaki, Bull. Chem. Soc. Jpn. 59, 2407 (1986).Google Scholar
  7. 7.
    H. Suzuki and S. Ishiguro, J. Chem. Soc. Faraday Trans. 86, 2179 (1990).CrossRefGoogle Scholar
  8. 8.
    S. Ishiguro, B. G. Jeliazkova, and H. Ohtaki, Bull. Chem. Soc. Jpn. 58, 1143 (1985).Google Scholar
  9. 9.
    S. Ishiguro, K. Ozutumi, and H. Ohtaki, Bull. Chem. Soc. Jpn. 60, 531 (1987).Google Scholar
  10. 10.
    S. Ishiguro, K. Ozutumi, and H. Ohtaki, J. Chem. Soc. Faraday Trans. 184, 2409 (1988).Google Scholar
  11. 11.
    R. L. Amey, J. Phys. Chem. 72, 3358 (1968).CrossRefGoogle Scholar
  12. 12.
    H. H. Szmant, in Dimethyl Sulfoxide, S. W. Jacob, E. E. Rosenbaum, and C. D. Wood, ed. (Marcel Dekker, New York, 1971).Google Scholar
  13. 13.
    M. Sandström, Acta Chem. Scand. A32, 5 (1978).Google Scholar
  14. 14.
    S. Itoh and H. Ohtaki, Z. Naturforsch. 42a, 858 (1987).Google Scholar
  15. 15.
    H. Bertagnolli, E. Schultz, and P. Chieux, Ber. Bunsenges. Phys. Chem. 93, 88 (1989).Google Scholar
  16. 16.
    D. F. Mierke and H. Kessler, J. Am. Chem. Soc. 113, 9466 (1991).CrossRefGoogle Scholar
  17. 17.
    I. Vaisman and M. L. Berkowitz, J. Am. Chem. Soc. 114, 7889 (1992).CrossRefGoogle Scholar
  18. 18.
    A. Luzar, A. K. Soper, and D. Chandler, J. Chem. Phys. 99, 6836 (1993).CrossRefGoogle Scholar
  19. 19.
    M. Rabinowitz and A. Pines, J. Am. Chem. Soc. 91, 1585 (1969).CrossRefGoogle Scholar
  20. 20.
    H. Ohtaki, S. Itoh, T. Yamaguchi, S. Ishiguro, and B. M. Rode, Bull. Chem. Soc. Jpn. 56, 3406 (1983).Google Scholar
  21. 21.
    T. Radnai, S. Itoh, and H. Ohtaki, Bull. Chem. Soc. Jpn. 61, 3845 (1988).Google Scholar
  22. 22.
    R. Konrat and H. Sterk, J. Phys. Chem. 94, 1291 (1990).CrossRefGoogle Scholar
  23. 23.
    Y. P. Puhovski and B. M. Rode, Chem. Phys. 190, 61 (1995).CrossRefGoogle Scholar
  24. 24.
    S. E. M. Colaianni and O. Faurskov Nielsen, J. Mol. Struct. 347, 267 (1995).CrossRefGoogle Scholar
  25. 25.
    H. Borrmann, I. Persson, M. Sandstrom, and C. M. V. Stalhandske, J. Chem. Soc., Perkin Trans. 2, 393 (2000).Google Scholar
  26. 26.
    Y. P. Puhovski, L. P. Safonova, and B. M. Rode, J. Mol. Liq. 103–104, 15 (2003).CrossRefGoogle Scholar
  27. 27.
    Z. Libus and H. Tialowska, J. Solution Chem. 4, 1011 (1975).CrossRefGoogle Scholar
  28. 28.
    H. Doe and T. Kitagawa, Inorg. Chem. 21, 2272 (1982).CrossRefGoogle Scholar
  29. 29.
    C. M. Cries, R. P. Hero, and E. Luksha, J. Phys. Chem. 72, 2970 (1968).CrossRefGoogle Scholar
  30. 30.
    C. M. Criss, J. Phys. Chem. 78, 1000 (1974).CrossRefGoogle Scholar
  31. 31.
    H. Ohtaki, J. Solution Chem. 21, 39 (1992).CrossRefGoogle Scholar
  32. 32.
    Y. Marcus, J. Solution Chem. 25, 455 (1996).CrossRefGoogle Scholar
  33. 33.
    Y. Marcus, The Properties of Solvents (Wiley, New York, 1998).Google Scholar
  34. 34.
    H. Ohtaki, S. Itoh, and B. M. Rode, Bull. Chem. Soc. Jpn. 59, 271 (1986).Google Scholar
  35. 35.
    O. Faurskov Nielsen, D. H. Christensen, and O. Have Rasmussen, J. Mol. Struct. 242, 273 (1991).CrossRefGoogle Scholar
  36. 36.
    J. Neuefeind, P. Chieux, and M. D. Zeidler, Mol. Phys. 76, 143 (1992).Google Scholar
  37. 37.
    J. Neuefeind, M. D. Zeidler, and H. F. Poulsen, Mol. Phys. 87, 189 (1996).CrossRefGoogle Scholar
  38. 38.
    F. Hammami, M. Bahri, S. Nasr, N. Jaidane, M. Oummezzine, and R. Cortes, J. Chem. Phys. 119, 4419 (2003).CrossRefGoogle Scholar
  39. 39.
    F. Hammami, S. Nasr, M. Oummezzine, and R. Cortes, Biomol. Eng. 19, 201 (2002).CrossRefPubMedGoogle Scholar
  40. 40.
    P. Bour, C. N. Tam, J. Sopkova, and F. R. Trouw, J. Chem. Phys. 108, 351 (1998).CrossRefGoogle Scholar
  41. 41.
    R. Ludwig, F. Weinhold, and T. C. Farrar, J. Chem. Phys. 107, 499 (1997).CrossRefGoogle Scholar
  42. 42.
    H. Torii, T. Tatsumi, T. Kanazawa, and M. Tasumi, J. Phys. Chem. B 102, 309 (1998).CrossRefGoogle Scholar
  43. 43.
    H. Torii and M. Tatsumi, J. Phys. Chem. B 102, 315 (1998).CrossRefGoogle Scholar
  44. 44.
    H. Trii and M. Tatsumi, Int. J. Quant. Chem. 70, 241 (1998).CrossRefGoogle Scholar
  45. 45.
    H. Torii and M. Tatsumi, J. Phys. Chem. A 104, 4174 (2000).CrossRefGoogle Scholar
  46. 46.
    Y. G. Bushuev and S. V. Davletbaeva, Russ. Chem. Bull. 49, 238 (2000).Google Scholar
  47. 47.
    J. Barthel, R. Buchner, and B. Wurm, J. Mol. Liq. 9899, 51 (2002).CrossRefGoogle Scholar
  48. 48.
    F. Hammami, S. Nasr, M. Oumezzine, and R. Cortes, Biomol. Eng. 19, 201 (2002).CrossRefPubMedGoogle Scholar
  49. 49.
    H. Ferid, B. Mohamed, N. Salah, J. Nejmeddine, O. Mohamed, and C. Robert, J. Chem. Phys. 119, 4419 (2003).CrossRefGoogle Scholar
  50. 50.
    S. Ishiguro, K. Yamamoto, and H. Ohtaki, Anal. Sci. 1, 263 (1985).Google Scholar
  51. 51.
    S. Ishiguro and H. Ohtaki, Coord. Chem. Rev. 15, 237 (1987).Google Scholar
  52. 52.
    H. Suzuki and S. Ishiguro, Netsu Sokutei 15, 152 (1988).Google Scholar
  53. 53.
    H. Suzuki, Doctor Thesis (Tokyo Institute of Technology, Tokyo, Japan, 1989).Google Scholar
  54. 54.
    S. Ishiguro, Bull. Chem. Soc. Jpn. 70, 1465 (1997).Google Scholar
  55. 55.
    M. Mecik and A. Chudziak, J. Solution Chem. 14, 653 (1985).CrossRefGoogle Scholar
  56. 56.
    Y. Marcus, Pure Appl. Chem. 57, 1103 (1985).Google Scholar
  57. 57.
    M. Koide and S. Ishiguro, J. Solution Chem. 24, 511 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Kenta Fujii
    • 1
  • Yasuhiro Umebayashi
    • 1
  • Ryo Kanzaki
    • 1
  • Daisuke Kobayashi
    • 1
  • Ryoko Matsuura
    • 1
  • Shin-ichi Ishiguro
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceKyushu University, HakozakiHigashi-kuJapan

Personalised recommendations