Advertisement

Journal of Solution Chemistry

, Volume 34, Issue 6, pp 731–737 | Cite as

Influence of the Solvation Upon the Reaction of α-Cyclodextrin with Carboxylic Acids, Their Methyl Esters, and Their Sodium Salts in Aqueous Solution Studied by Calorimetric Measurements

  • Hans-Jürgen Buschmann
  • Eckhard Schollmeyer
Article

Abstract

The complex formation of α-cyclodextrin with carboxylic acids, their methyl esters, and their sodium salts has been studied using calorimetric titrations. The stronger solvation of the carboxylic sodium salts compared with the free acid or their methyl esters lowers the values of the reaction enthalpy and entropy. Complex formation is influenced in the positive direction by the release of “high-energy water” from the cavity of α-cyclodextrin. The values of the reaction enthalpy and entropy increase for the complex formation of α-cyclodextrin with increasing chain length of the carboxylic acids and their derivatives, and reach an approximately constant upper limit in the case of five methylene groups.

Key Words

α-Cyclodextrin carboxylic acids complex formation solvation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Szejtli, Cyclodextrin Technology (Kluwer, Dordrecht, 1988).Google Scholar
  2. 2.
    K. W. Street and W. E. Acree, Appl. Spectrosc. 42, 1315 (1988).CrossRefGoogle Scholar
  3. 3.
    M. V. Rekharsky and Y. Inoue, Chem. Rev. 98, 1875 (1998).CrossRefPubMedGoogle Scholar
  4. 4.
    K. A. Connors, J. Pharm. Sci. 84, 843 (1995).PubMedGoogle Scholar
  5. 5.
    K.-H. Frömming and J. Szejtli, Cyclodextrins in Pharmacy (Kluwer, Dordrecht, 1994).Google Scholar
  6. 6.
    W. Saenger and T. Steiner, Acta Cryst. A 54, 798 (1998).CrossRefGoogle Scholar
  7. 7.
    W. Saenger, M. Noltemeyer, P. C. Manor, B. Hingerty, and B. Klar, Bioorg. Chem. 5, 187 (1976).CrossRefGoogle Scholar
  8. 8.
    M. Rekharsky and Y. Inoue, J. Am. Chem. Soc. 122, 4418 (2000).CrossRefGoogle Scholar
  9. 9.
    G. Castronuovo, V. Elia, D. Fessas, A. Giordano, and F. Velleca, Carbohydr. Res. 272, 31 (1995).CrossRefGoogle Scholar
  10. 10.
    J. J. Christensen, J. Ruckman, D. J. Eatough, and R. M. Izatt, Thermochim. Acta 3, 203 (1972).CrossRefGoogle Scholar
  11. 11.
    D. J. Eatough, R. M. Izatt, and J. J. Christensen, Thermochim. Acta 3, 219 (1972).CrossRefGoogle Scholar
  12. 12.
    D. J. Eatough, R. M. Izatt, and J. J. Christensen, Thermochim. Acta 3, 233 (1972).CrossRefGoogle Scholar
  13. 13.
    H.-J. Buschmann and E. Schollmeyer, Thermochim. Acta 333, 49 (1999).CrossRefGoogle Scholar
  14. 14.
    M. V. Rekharsky and Y. Inoue, Chem. Rev. 98, 1875 (1998).CrossRefPubMedGoogle Scholar
  15. 15.
    Y. Marcus, Ion Solvation (J. Wiley, Chichester, 1985), p. 94.Google Scholar
  16. 16.
    R. J. Gelb and L. M. Schwarz, J. Incl. Phenom. 7, 465 (1989).CrossRefGoogle Scholar
  17. 17.
    M. V. Rekharsky, M. P. Mayhew, R. N. Goldberg, P. D. Ross, Y. Yamashoji, and Y. Inoue, J. Phys. Chem. B 101, 87 (1997).CrossRefGoogle Scholar
  18. 18.
    G. Castronuovo, V. Elia, D. Fessas, F. Velleca, and G. Viscardi, Carbohydrate Res. 287, 127 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Deutsches Textilforschungszentrum Nord-West e.V.KrefeldGermany

Personalised recommendations