Advertisement

Journal of Solution Chemistry

, Volume 34, Issue 3, pp 297–306 | Cite as

BET Modeling of Solid–Liquid Phase Diagrams of Common Ion Binary Salt Hydrate Mixtures. I. The BET Parameters

  • Y. Marcus
Article

Abstract

Solid–liquid phase diagrams of binary salt hydrate mixtures can be modeled by means of the BET method, next paper, which considers the water as if it were “adsorbed” on “sites” of the salt. The parameter r describes the average number of sites and ε describes the molar enthalpy of adsorption in excess of the enthalpy of condensation of water vapor. The BET parameters r and ε required for the modeling were obtained for a large number of salts from water activities or related quantities of concentrated aqueous solutions of them. This paper consists of a comprehensive compilation of these two BET parameters for a large number of salts.

Keywords

BET method phase diagram concentrated aqueous electrolytes modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Mokhosoev and T. T. Got’manova, Russ. J. Inorg. Chem. 11, 466 (1966).Google Scholar
  2. 2.
    Y. Marcus, V. Dangor, and S. Lessery, Thermochim. Acta 77, 216 (1984).CrossRefGoogle Scholar
  3. 3.
    Y. Marcus, A. Minevich, and L. Ben-Dor, Thermochim. Acta 412, 163 (2004).CrossRefGoogle Scholar
  4. 4.
    Y. Marcus, A. Minevich, and L. Ben-Dor, J. Therm. Anal. Calorim. in press (2005).Google Scholar
  5. 5.
    M. R. Ally and J. Braunstein, Fluid Phase Equilib. 87, 213 (1993).CrossRefGoogle Scholar
  6. 6.
    W. Voigt, Monatsh. Chem. 124, 839 (1993).CrossRefGoogle Scholar
  7. 7.
    M. R. Ally and J. Braunstein, J. Chem. Thermodyn. 30, 49 (1998).CrossRefGoogle Scholar
  8. 8.
    M. R. Ally, Monatsh. Chem. 131, 341 (2000).CrossRefGoogle Scholar
  9. 9.
    D. Zeng, Ph.D. Thesis, Tech. University Freiberg, 2003.Google Scholar
  10. 10.
    R. H. Stokes and R. A. Robinson, J. Am. Chem. Soc. 70, 1870 (1948).CrossRefGoogle Scholar
  11. 11.
    R. A. Anderson, J. Am. Chem. Soc. 68, 686 (1946).CrossRefGoogle Scholar
  12. 12.
    R. N. Goldberg and R. L. Nuttall, J. Phys. Chem. Ref. Data 7, 263 (1978); R. N. Goldberg, R. L. Nuttall, and B. R. Staples, J. Phys. Chem. Ref. Data 8, 923 (1979).Google Scholar
  13. 13.
    F. H. Spedding, H. O. Weber, V. W. Saeger, H. H. Petheram, J. A. Rard, and A. Habenschuss, J. Chem. Eng. Data 21, 341 (1976).CrossRefGoogle Scholar
  14. 14.
    J. A. Rard, D. G. Miller, and F. H. Spedding, J. Chem. Eng. Data 24, 348 (1979).CrossRefGoogle Scholar
  15. 15.
    J. A. Rard, L. E. Shiers, D. J. Heiser, and F. H. Spedding, J. Chem. Eng. Data 22, 337 (1977).CrossRefGoogle Scholar
  16. 16.
    J. A. Rard, H. O. Weber, and F. H. Spedding J. Chem. Eng. Data, 22, 187 (1977).CrossRefGoogle Scholar
  17. 17.
    J. A. Rard and F. H. Spedding, J. Chem. Eng. Data 26, 391 (1981).CrossRefGoogle Scholar
  18. 18.
    J. A. Rard and F. H. Spedding, J. Chem. Eng. Data 27, 354 (1982).Google Scholar
  19. 19.
    H. Braunstein and J. Braunstein, J. Chem. Thermodyn. 3, 419 (1971).CrossRefGoogle Scholar
  20. 20.
    Z. Kodej, H. Palkova, and G. A. Sacchetto, J. Chem. Thermodyn. 20, 363 (1988).CrossRefGoogle Scholar
  21. 21.
    S. K. Jain, A. K. Jain, and A. K. Gupta, Indian J. Chem. 24A, 340 (1985).Google Scholar
  22. 22.
    M. R. Ally and J. Braunstein, Fluid Phase Equilib. 120, 131 (1996).CrossRefGoogle Scholar
  23. 23.
    J. Sangster, M.-C. Abraham, and M. Abraham, J. Chem. Thermodyn. 14, 599 (1982).CrossRefGoogle Scholar
  24. 24.
    A. N. Campbell, J. B. Fishman, J. G. Rutherford, J. D. Schaeffer, and L. Ross, Can. J. Chem. 34, 151 (1956).Google Scholar
  25. 25.
    G. A. Sacchetto, G. G. Bombi, and C. Macca, J. Chem. Thermodyn. 13, 31 (1981).Google Scholar
  26. 26.
    Z. Kodej and G. A. Sacchetto, J. Chem. Soc., Faraday Trans. 82, 1853 (1986).Google Scholar
  27. 27.
    Th. Fanghänel and K. Grjotheim, Acta Chem. Scand. 44, 892 (1990).CrossRefGoogle Scholar
  28. 28.
    R. H. Stokes, J. Am. Chem. Soc. 75, 3856 (1953).CrossRefGoogle Scholar
  29. 29.
    J. A. Rard, J. Chem. Eng. Data 29, 443 (1984).CrossRefGoogle Scholar
  30. 30.
    W. W. Ewing, C. F. Glick, and H. E. Rasmussen, J. Am. Chem. Soc. 64, 1445 (1942).CrossRefGoogle Scholar
  31. 31.
    J. A. Rard, J. Chem. Eng. Data 37, 433 (1992).CrossRefGoogle Scholar
  32. 32.
    R. H. Stokes and B. J. Levien, J. Am. Chem. Soc. 68, 333 (1946).CrossRefGoogle Scholar
  33. 33.
    A. I. Biggs, H. N. Parton, and R. A. Robinson, J. Am. Chem. Soc. 77, 5844 (1955).Google Scholar
  34. 34.
    J. Guion, D. D. Sauzade, and M. Laügt, Thermochim. Acta 67, 167 (1983).CrossRefGoogle Scholar
  35. 35.
    O. Ya. Samoilov, Structure of Electrolyte Solutions and the Hydration of Ions (English Translation), Consultants Bureau, New York, 1965; O. Ya. Samoilov, in Water and Aqueous Solutions, R. A. Horne, ed., (Wooley, New York, 1972), pp. 597–612.Google Scholar
  36. 36.
    A. Apelblat, private comm. 2004.Google Scholar
  37. 37.
    Y. Marcus, Ion Solvation, (Wiley, Chichester, 1985), pp. 79–81.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Inorganic and Analytical ChemistryThe Hebrew UniversityJerusalemIsrael

Personalised recommendations