Journal of Solution Chemistry

, Volume 34, Issue 1, pp 95–111 | Cite as

Physicochemical Properties of Ampicillin and Amoxicillin as Biologically Active Ligands with Some Alkali Earth, Transition Metal, and Lanthanide Ions in Aqueous and Mixed Solvents at 20, 30, and 40C



The acid-base equilibria of ampicillin and amoxicillin were investigated in pure water and different solvent + water mixtures (solvent = methanol, ethanol, acetone, dimethylformamide, and dimethyl sulfoxide) at a constant ionic strength (I = 0.1 mol-dm−3 KNO3) and organic solvent volume fractions of 10, 20, and 30%. The effect of temperature on these equilibria was studied at 20, 30, and 40C. Thermodynamic functions of these ligands were calculated and discussed in terms of ΔG, ΔH, and ΔS. The number of ionizable protons was determined using conductometric titrations. The formation constant of the complexes, which form by reaction of the ligands with Mg(II), Ca(II), Zn(II), Cu(II), Ni(II), Co(II), Ce(III), Pr(III), Eu(III), Gd(III), Ho(III), Er(III), and Yb(III), are determined. The relative stability of the alkali earth, transition, and lanthanide elements are compared with each other and discussed in terms of the ionic radius and the electronic structure of the outer shell of that ion. The results obtained are discussed in terms of macroscopic properties of the mixed solvents and the possible variation in microheterogenity of the solvation shells around the solute.


Ampicillin amoxcillin potentiometry conductometry spectrophotometry thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Abdel Hadi, W. M. Hosny, and E. M. Shoukry, Egypt. J. Chem. 39(1), 49 (1996).Google Scholar
  2. 2.
    W. Durckheimer, J. Blumbach, R. Lattrell, and K. H. Scheunemann, Angew. Chem., Int. Ed. Engl. 24, 180 (1984).Google Scholar
  3. 3.
    M. I. Page, Acc. Chem. Res. 17, 144 (1984).Google Scholar
  4. 4.
    D. M. Campoli-Richards and R. N. Brogden, Drugs 33, 577 (1987).Google Scholar
  5. 5.
    P. K. Bhattacharyya and W. M. Cort, Anal. Profiles Drug Subs. 7, 19 (1978).Google Scholar
  6. 6.
    D. Golemi, L. Maveyraud, S. Vakulenko, J.-P. Samama, and S. Mobashery, Biochem. 98(25), 14280 (2001).Google Scholar
  7. 7.
    K. Bush and S. Mobashery, Adv. Exp. Med. Biol. 456, 71 (1998).Google Scholar
  8. 8.
    K. Bush, Clin. Infect. Dis. 311, 1085 (2001).Google Scholar
  9. 9.
    A. Albert and E. P. Serjeant, The Determination of Ionization Constants, A Laboratory Manual, 3rd edn. (Chapman and Hall, New York, 1984).Google Scholar
  10. 10.
    H. A. Flaschka, EDTA Titrations, 2nd edn. (Pergamon, Oxford, UK,1964).Google Scholar
  11. 11.
    R. G. Bates, Determination of pH: Theory and Practice (Wiley, New York, 1964).Google Scholar
  12. 12.
    E. M. Woolley and L. G. Hepler, Anal. Chem. 44(8), 1520 (1972).Google Scholar
  13. 13.
    E. M. Woolley, D. G. Hurkot, and L. G. Hepler, J. Phys. Chem. 74(22), 3908 (1970).Google Scholar
  14. 14.
    B. Gutbezahl and E. Grunwald, J. Am. Chem. Soc. 75, 565 (1953).Google Scholar
  15. 15.
    H. S. Harned and L. D. Fallon, J. Am. Chem. Soc. 61, 2374 (1939).Google Scholar
  16. 16.
    G. Douheret, Bull. Soc. Chim. Fr., 1412 (1967) and 3122 (1968).Google Scholar
  17. 17.
    P. C. Srivastava, Thermochim. Acta 55, 125 (1982).Google Scholar
  18. 18.
    L. A. Herrero and A. Terron, Polyhedron 17(22), 3825 (1999).Google Scholar
  19. 19.
    G. H. Nancollas, Coord. Chem. Rev. 5, 379 (1970).Google Scholar
  20. 20.
    L. P. Hammett, J. Am. Chem. Soc. 50, 2666 (1928).Google Scholar
  21. 21.
    F. Frank and D. J. G. Ives, Quart. Rev. 20, 1 (1966).Google Scholar
  22. 22.
    H. P. Bennetto, D. Feakins, and D. L. Turner, J. Chem. Soc. 1211 (1966).Google Scholar
  23. 23.
    R. P. T. Tomkins, The Thermodynamics of Ion-Solvation in Methanol–Water Mixtures, Thesis, Birkbeck College, University of London, 1966.Google Scholar
  24. 24.
    B. Tremillon, Chemistry in Non-Aqueous Solvents (Reidel, Dordrecht, 1974).Google Scholar
  25. 25.
    E. M. Arnett, Progr. S., Phys. Org. Chem. 1, 223 (1963).Google Scholar
  26. 26.
    N. C. Deno and M. J. Wisotsky, J. Am. Chem. Soc. 85, 1735 (1963).Google Scholar
  27. 27.
    J. F. Coetzee and G. R. Padmanobhan, J. Phys. Chem. 69, 3193 (1965).Google Scholar
  28. 28.
    J. F. Coetzee and C. D. Ritchie, Solvent–Solvent Interaction (Dekker, New York, 1969).Google Scholar
  29. 29.
    H. M. Irving and H. S. Rossotti, J. Chem. Soc. 2904 (1954).Google Scholar
  30. 30.
    A. E. Martell and R. J Motekaitis. Determination and Use of Stability Constants (VCH Publishers) New York, 1992.Google Scholar
  31. 31.
    K. H. Scheller, T. H. J. Abel, P. E. Polanyi, P. K. Wenk, B. E. Fisher, and H. Sigel, Eur. J. Biochem. 107, 455 (1980).Google Scholar
  32. 32.
    H. Sigel, K. H. Scheller., and B. Prijs, Inorg. Chim. Acta 66, 147 (1982).Google Scholar
  33. 33.
    H. A. Azab, A. M. El-Nady. S. A. El-Korashy, and M. M. Hamed, J. Chem. Eng. Data 40, 83 (1995).Google Scholar
  34. 34.
    G. L. Miessler and D. A. Tarr, Inorganic Chemistry (Prentice-Hall, London, UK, 1991).Google Scholar
  35. 35.
    H. Sigel, Metal Ions in Biological Systems, Vol 1: Simple Complexes (Dekker, New York, 1974).Google Scholar
  36. 36.
    P. Caravan, T. Hedlund, S. Liu, S. Sjöberg, and C. Orvig, J. Am. Chem. Soc. 117, 11230 (1995).Google Scholar
  37. 37.
    A. S. Orabi. Mansoura Sci. Bull., 28(11), 240 (2001).Google Scholar
  38. 38.
    H. Sigel, Chimia 41, 11 (1987).Google Scholar
  39. 39.
    G. R. Choppin, M. P. Goedken, and T. F. Gritmon, J. Inorg. Nucl. Chem. 39, 2025 (1977).Google Scholar
  40. 40.
    R. T. Morrison and R. N. Boyd, Organic Chemistry, 6th edn. (Prentice-Hall, New Jersey, 1992). Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceSuez Canal UniversityIsmailiaEgypt

Personalised recommendations