Journal of Scheduling

, Volume 20, Issue 3, pp 303–311 | Cite as

The equivalence of two classical list scheduling algorithms for dependent typed tasks with release dates, due dates and precedence delays

  • Aurélien Carlier
  • Claire Hanen
  • Alix Munier Kordon


We consider a finite set of unit time execution tasks with release dates, due dates and precedence delays. The machines are partitioned into k classes. Each task requires one machine from a fixed class to be executed. The problem is the existence of a feasible schedule. This general problem is known to be \(\mathcal {NP}\)-complete; many studies were devoted to the determination of polynomial time algorithms for some special subcases, most of them based on a particular list schedule. The Garey–Johnson and Leung–Palem–Pnueli algorithms (respectively GJ and LPP in short) are both improving the due dates to build a priority list. They are modifying them using necessary conditions until a fixed point is reached. The present paper shows that these two algorithms are different implementations of the same generic one. The main consequence is that all the results valid for GJ algorithm are also for LPP and vice versa.


List scheduling algorithms Polynomial subproblems Approximation algorithms 


  1. Benabid, A., & Hanen, C. (2010). Performance of Garey–Johnson algorithm for pipelined type tasks systems. International Transactions on Operational Research, 17(6), 797–808.CrossRefGoogle Scholar
  2. Brucker, P., & Knust, S. (1999). Complexity results for single-machine problems with positive finish-start time-lags. Computing, 63(4), 299–316. doi: 10.1007/s006070050036.CrossRefGoogle Scholar
  3. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed.). Cambridge, MA: The MIT Press.Google Scholar
  4. Dupont de Dinechin, B. (2007). Scheduling monotone interval orders on typed task systems. In PLANSIG 2007, 26th Worshop of the UK Planning and Scheduling Special Interest Group (pp. 25–31).Google Scholar
  5. Garey, M. R., & Johnson, D. S. (1977). Two-processor scheduling with start-time and deadlines. SIAM Journal on Computing, 6, 416–426.CrossRefGoogle Scholar
  6. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. Studienreihe Informatik. San Francisco, CA: W.H. Freeman and Company.Google Scholar
  7. Hanen, C., & Zinder, Y. (2005). The worst case analysis of Garey–Johnson algorithm for preemptive m processors. Multidisciplinary International Conference on Scheduling: Theory and Applications, 2, 453–470.Google Scholar
  8. Hanen, C., & Zinder, Y. (2009). The worst-case analysis of the Garey–Johnson algorithm. Journal of Scheduling, 12(4), 389–400.CrossRefGoogle Scholar
  9. Hennessy, J. L., & Gross, T. (1983). Postpass code optimization of pipeline constraints. ACM Transactions on Programming Languages and Systems, 5(3), 422–448. doi: 10.1145/2166.357217.CrossRefGoogle Scholar
  10. Horn, W. (1974). Some simple scheduling algorithms. Naval Research Logistics Quarterly, 21, 177–185.CrossRefGoogle Scholar
  11. Kordon, A. M., Kacem, F., Dupont de Dinechin, B., & Finta, L. (2013). Scheduling an interval ordered precedence graph with communication delays and a limited number of processors. RAIRO—Operations Research, 47, 73–87. doi: 10.1051/ro/2013028.CrossRefGoogle Scholar
  12. Lenstra, J., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. In B. K. P. L. Hammer, E. L. Johnson, & G. Nemhauser (Eds.), Studies in integer programming, annals of discrete mathematics (pp. 343–362). Amsterdam: Elsevier. doi: 10.1016/S0167-5060(08)70743-X.CrossRefGoogle Scholar
  13. Leung, A., Palem, K. V., & Pnueli, A. (2001). Scheduling time-constrained instructions on pipelined processors. ACM Transactions on Programming Languages and Systems, 23, 73–103. doi: 10.1145/383721.383733.CrossRefGoogle Scholar
  14. Palem, K. V., & Simons, B. B. (1993). Scheduling time-critical instructions on risc machines. ACM Transactions on Programming Languages and Systems, 15(4), 632–658. doi: 10.1145/155183.155190.CrossRefGoogle Scholar
  15. Ullman, J. D. (1975). Np-complete scheduling problems. Journal of Computer and System Sciences, 10(3), 384–393. doi: 10.1016/S0022-0000(75)80008-0.CrossRefGoogle Scholar
  16. Yu, W., Hoogeveen, H., & Lenstra, J. K. (2004). Minimizing makespan in a two-machine flow shop with delays and unit-time operations is np-hard. Journal of Scheduling, 7(5), 333–348.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Aurélien Carlier
    • 1
  • Claire Hanen
    • 1
    • 2
  • Alix Munier Kordon
    • 1
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606ParisFrance
  2. 2.Univeristé Paris-Lumières, Université Paris Ouest Nanterre La DéfenseNanterreFrance

Personalised recommendations