Advertisement

Journal of Scheduling

, Volume 15, Issue 2, pp 157–164 | Cite as

Efficiency analysis of load balancing games with and without activation costs

  • Bo Chen
  • Sinan Gürel
Article

Abstract

In this paper, we study two models of resource allocation games: the classical load-balancing game and its new variant involving resource activation costs. The resources we consider are identical and the social costs of the games are utilitarian, which are the average of all individual players’ costs.

Using the social costs we assess the quality of pure Nash equilibria in terms of the price of anarchy (PoA) and the price of stability (PoS). For each game problem, we identify suitable problem parameters and provide a parametric bound on the PoA and the PoS. In the case of the load-balancing game, the parametric bounds we provide are sharp and asymptotically tight.

Keywords

Resource allocation game Congestion cost Load balancing Cost sharing Price of anarchy Price of stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aland, S., Dumrauf, D., Gairing, M., Monien, B., & Schoppmann, F. (2006). Exact price of anarchy for polynomial congestion games. In B. Duran & W. Thomas (Eds.), LNCS: Vol3884. Proceedings of the 23rd international symposium on theoretical aspects of computer science (pp. 218–229). Berlin: Springer. Google Scholar
  2. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., & Roughgarden, T. (2008). The price of stability for network design with fair cost allocation. SIAM Journal on Computing, 38(4), 1602–1623. CrossRefGoogle Scholar
  3. Awerbuch, B., Azar, Y., & Epstein, A. (2005). The price of routing unsplittable flow. In 37th ACM symposium on theory of computing (pp. 57–66), Baltimore, MD, USA, 22–24 May 2005. Google Scholar
  4. Berenbrink, P., Goldberg, L. A., Goldberg, P. W., & Martin, R. (2006). Utilitarian resource assignment. Journal of Discrete Algorithms, 4, 567–587. CrossRefGoogle Scholar
  5. Czumaj, A. (2004). Selfish routing on the Internet. In Handbook of scheduling: algorithms, models, and performance analysis (pp. 517–542). Boca Raton: CRC Press, Chap. 42. Google Scholar
  6. Czumaj, A., & Vöcking, B. (2002). Tight bounds for the worst-case equilibria. In 13th annual ACM-SIAM symposium on discrete algorithms (pp. 413–420). Philadelphia: ACM-SIAM. Google Scholar
  7. Endriss, U., Maudet, N., Sadri, F., & Toni, F. (2003). On optimal outcomes of negotiations over resources. In The 2nd international joint conference on autonomous agents and multiagent systems (AAMAS) (pp. 177–184), Melbourne, Australia, 2003. CrossRefGoogle Scholar
  8. Epstein, A., Feldman, M., & Mansour, Y. (2007). Strong equilibrium in cost sharing connection games. In EC ’07: Proceedings of the 8th ACM conference on electronic commerce (pp. 84–92). New York: ACM. CrossRefGoogle Scholar
  9. Feigenbaum, J., Papadimitriou, C. H., & Shenker, S. (2001). Sharing the cost of multicast transmissions. Journal of Computer and System Sciences, 63(1), 21–41. CrossRefGoogle Scholar
  10. Feldman, M., & Tamir, T. (2008). Conflicting congestion effects in resource allocation games. In G. Goos, J. Hartmanis, & J. van Leeuwen (Eds.), LNCS: Vol5385. Proceedings of the 4th international workshop on Internet and network economics (pp. 109–117. Berlin/Heidelberg: Springer. CrossRefGoogle Scholar
  11. Gairing, M., & Scoppmann, F. (2007). Total latency in singleton congestion games. In X. Deng & F. C. Graham (Eds.), LNCS: Vol4858. Proceedings of the 3rd workshop on Internet and network economics (WINE 2007) (pp. 381–387. Berlin/Heidelberg: Springer. Google Scholar
  12. Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., & Rode, M. (2008a). Nash equilibria in discrete routing games with convex latency functions. Journal of Computer and System Sciences, 74, 1199–1225. CrossRefGoogle Scholar
  13. Gairing, M., Monien, B., & Tiemann, K. (2008b). Selfish routing with incomplete information. Theory of Computing Systems, 42, 91–130. CrossRefGoogle Scholar
  14. Heydenreich, B., Müller, R., & Uetz, M. (2007). Games and mechanism design in machine scheduling—an introduction. Production and Operations Management, 16(4), 437–454. CrossRefGoogle Scholar
  15. Hoefer, M., & Souza, A. (2011). Tradeoffs and average-case equilibria in selfish routing. ACM Transactions on Computation Theory (to appear). Google Scholar
  16. Koutsoupias, E., & Papadimitriou, C. (1999). Worst-case equilibria. In G. Goos, J. Hartmanis, & J. van Leeuwen (Eds.), LNCS: Vol1563. Proceedings of the 16th international symposium on theoretical aspects of computer science (pp. 404–413. Berlin: Springer. Google Scholar
  17. Lücking, T., Mavronicolas, M., Monien, B., & Rode, M. (2008). A new model for selfish routing. Theor. Comput. Sci., 406(3), 187–206. CrossRefGoogle Scholar
  18. McBurney, P., Parsons, S., & Wooldridge, M. (2002). Desiderata for argumentation protocols. In The 1st international joint conference on autonomous agents and multiagent systems (AAMAS) (pp. 402–409), Bologna, Italy. CrossRefGoogle Scholar
  19. Papadimitriou, C. (2001). Algorithms, games, and the Internet. In Proc. 33rd ACM symposium on theory of computing (pp. 749–753). New York: ACM Press. Google Scholar
  20. Roughgarden, T. (2009). Intrinsic robustness of the price of anarchy. In STOC ’09: Proceedings of the 41st annual ACM symposium on theory of computing (pp. 513–522). New York: ACM. CrossRefGoogle Scholar
  21. Roughgarden, T., & Tardos, É. (2002). How bad is selfish routing? Journal of ACM, 49(2), 236–259. CrossRefGoogle Scholar
  22. Sandholm, T. W. (1998). Contract types for satisficing task allocation: I theoretical results. In The AAAI spring symposium: satisficing models, Palo Alto, California, USA. Google Scholar
  23. Vöcking, B. (2007). Selfish load balancing. In Algorithmic game theory (pp. 517–542). Cambridge: Cambridge University Press. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Qufu Normal UniversityShandongChina
  2. 2.Centre for Discrete Mathematics and its Applications (DIMAP), Warwick Business SchoolUniversity of WarwickCoventryUK
  3. 3.Department of Industrial EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations