Journal of Scheduling

, Volume 12, Issue 4, pp 361–374 | Cite as

Simultaneous scheduling and location (ScheLoc): the planar ScheLoc makespan problem

  • Donatas Elvikis
  • Horst W. Hamacher
  • Marcel T. Kalsch


While in classical scheduling theory the locations of machines are assumed to be fixed we will show how to tackle location and scheduling problems simultaneously. Obviously, this integrated approach enhances the modeling power of scheduling for various real-life problems. In this paper, we introduce in an exemplary way theory and three polynomial solution algorithms for the planar ScheLoc makespan problem, which includes a specific type of a scheduling and a rather general, planar location problem, respectively. Finally, a report on numerical tests as well as a generalization of this specific ScheLoc problem is presented.


Scheduling theory Location theory Global optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carrizosa, E., Hamacher, H. W., Klein, R., & Nickel, S. (2000). Solving nonconvex planar location problems by finite dominating sets. Journal of Global Optimization, 18(2), 195–210. CrossRefGoogle Scholar
  2. Durier, R., & Michelot, C. (1985). Geometrical properties of the Fermat–Weber problem. European Journal of Operational Research, 20, 332–343. CrossRefGoogle Scholar
  3. Hamacher, H. W., & Hennes, H. (2007). Integrated scheduling and location models: single machine makespan problems. Studies in Locational Analysis, 16, 77–90. Google Scholar
  4. Hennes, H. (2005). Integration of scheduling and location models. Aachen: Shaker Verlag. Google Scholar
  5. Hopcroft, J., & Tarjan, R. (1974). Efficient planarity testing. Journal of the ACM, 21(4), 549–568. CrossRefGoogle Scholar
  6. Kalcsics, J., Nickel, S., Puerto, J., & Tamir, A. (2002). Algorithmic results for ordered median problems. Operations Research Letters, 30, 149–158. CrossRefGoogle Scholar
  7. Megiddo, N. (1984). Linear programming in linear time when the dimension is fixed. Journal of the Association for Computing Machinery, 31(1), 114–127. Google Scholar
  8. Minkowski, H. (1967). Gesammelte Abhandlungen—Band 2. New York: Chelsea Publishing Company. Google Scholar
  9. Mulmuley, K. (1994). Computational geometry: an introduction through randomized algorithms. Englewood Cliffs: Prentice Hall. Google Scholar
  10. Nickel, S., & Puerto, J. (2005). Location theory: a unified approach. Berlin: Springer. Google Scholar
  11. Puerto, J., & Fernández, F. R. (2000). Geometrical properties of the symmetrical single facility location problem. Journal of Nonlinear and Convex Analysis, 1(3), 321–342. Google Scholar
  12. Rodríguez-Chía, A. M., Nickel, S., Puerto, J., & Fernández, F. R. (2000). A flexible approach to location problems. Mathematical Methods of Operations Research, 51(1), 69–89. CrossRefGoogle Scholar
  13. Thisse, J. F., Ward, J. E., & Wendell, R. E. (1984). Some properties of location problems with block and round norms. Operations Research, 32, 1309–1327. CrossRefGoogle Scholar
  14. Ward, J. E., & Wendell, R. E. (1985). Using block norms for location modeling. Operations Research, 33, 1074–1090. CrossRefGoogle Scholar
  15. Weißler, A. (1999). General bisectors and their application in planar location theory. Aachen: Shaker Verlag. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Donatas Elvikis
    • 1
  • Horst W. Hamacher
    • 1
  • Marcel T. Kalsch
    • 1
  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations