Advertisement

Journal of Scheduling

, Volume 11, Issue 1, pp 29–47 | Cite as

A multi-criteria approach for scheduling semiconductor wafer fabrication facilities

  • Michele E. Pfund
  • Hari Balasubramanian
  • John W. Fowler
  • Scott J. Mason
  • Oliver Rose
Article

Abstract

In this research, we model a semiconductor wafer fabrication process as a complex job shop, and adapt a Modified Shifting Bottleneck Heuristic (MSBH) to facilitate the multi-criteria optimization of makespan, cycle time, and total weighted tardiness using a desirability function. The desirability function is implemented at two different levels of the MSBH: the subproblem solution procedure level (SSP level) and the machine criticality measure level (MCM level). In addition, we suggest two different methods of choosing the critical toolgroup at the MCM level: (1) the Local MCM approach, which chooses the critical toolgroup based on local desirability values from the SSP level and (2) the Global MCM approach, which chooses the critical toolgroup based on its impact on the desirability of the entire disjunctive graph. Results demonstrate the desirability-based approaches’ ability to simultaneously minimize all three objectives.

Keywords

Multicriteria Shifting bottleneck Complex job shop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J., Balas, E., & Zawack, D. (1988). The Shifting Bottleneck procedure for job shop scheduling. Management Science, 34, 391–401. Google Scholar
  2. Balas, E., Lancia, G., Serafini, P., & Vazacopoulos, A. (1998). Job shop scheduling with deadlines. Journal of Combinatorial Optimization, 1, 329–353. CrossRefGoogle Scholar
  3. Balas, E., Lenstra, J. K., & Vazacopoulos, A. (1995). The one-machine problem with delayed precedence constraints and its use in job shop scheduling. Management Science, 41(1), 94–109. CrossRefGoogle Scholar
  4. Balas, E., & Vazacopoulos, A. (1998). Guided local search with shifting bottleneck for job shop scheduling. Management Science, 44(2), 262–275. Google Scholar
  5. Balas, E., Simonetti, N., & Vazacopoulos, A. (2005). Job shop scheduling with set-up times, deadlines, and precedence constraints. In Proceedings of the 2nd multidisciplinary international conference on scheduling: theory and applications (pp. 520–532). New York: MISTA. Google Scholar
  6. Balasubramanian, H., Fowler, J. W., & Pfund, M. E. (2006). Single machine bicriteria scheduling using the apparent tardiness cost heuristic. In Industrial engineering research conference, Orlando, FL, USA. Google Scholar
  7. Chen, Y., Fowler, J. W., Pfund, M. E., & Montgomery, D. C. (2007a). Methodologies for parameterization of composite dispatching rules ASUIE-ORPS-2007-019. Industrial Engineering, Arizona State University. http://ie.fulton.asu.edu/research/workingpaper/wps.php
  8. Chen, Y., Pfund, M. E., Montgomery, D. C., Fowler, J. W., & Callarman, T. E. (2007b). Robust scaling parameters for composite dispatching rules ASUIE-ORPS-2007-020. Industrial Engineering, Arizona State University. http://ie.fulton.asu.edu/research/workingpaper/wps.php
  9. Cochran, J. K., Horng, S. M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers and Operations Research, 30, 1087–1102. CrossRefGoogle Scholar
  10. Dabbas, R., Fowler, J., Rollier, D., & McCarville, D. (2003). Multiple response optimization using mixture-designed experiments and desirability functions in semiconductor scheduling. International Journal of Production Research, 41, 939–961. CrossRefGoogle Scholar
  11. Dauzère-Pérès, S., & Lasserre, J. B. (1993). A modified Shifting Bottleneck procedure for the job shop scheduling. International Journal of Production Research, 31, 923–932. CrossRefGoogle Scholar
  12. Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12, 214–219. Google Scholar
  13. El Adl, M. K., Rodriguez, A. A., & Tsakalis, K. S. (1996). Hierarchical modeling and control of re-entrant semiconductor manufacturing facilities. In Proceedings of the 35th conference on decision and control, Kobe, Japan. Google Scholar
  14. Esquivel, S. C., Ferrero, S. W., & Gallard, R. H. (2002). Parameter settings and representations in Pareto-based optimization for job shop scheduling. Cybernetics and Systems, 33, 559–578. CrossRefGoogle Scholar
  15. Foote, B. L., Ravindran, A., & Lashine, S. (1988). Computational feasibility of multi-criteria models of production, planning and scheduling. Computers and Industrial Engineering, 15, 129–138. CrossRefGoogle Scholar
  16. Fowler, J., & Pfund, M. (2001). State of the art scheduling survey results. Semiconductor Research Corporation Publication Number P003240 Google Scholar
  17. Fowler, J. W., Feigin, G., & Leachman, R. (1995). Semiconductor manufacturing Testbed: data sets. Arizona State University Google Scholar
  18. Gadkari, A., Pfund, M. E., Fowler, J. W., & Chen, Y. Scheduling jobs on parallel machines with setup times and ready times, Computers and Industrial Engineering, to appear (2007) Google Scholar
  19. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5, 287–326. Google Scholar
  20. Hoogeveen, H. (2005). Multicriteria Scheduling, European Journal of Operational Research, 167(3). Google Scholar
  21. Holtsclaw, H. H., & Uzsoy, R. (1996). Machine criticality measures and subproblem solution procedures in shifting bottleneck methods: a computational study. Journal of the Operational Research Society, 47(5), 666–677. CrossRefGoogle Scholar
  22. Iima, H., Hara, T., Ichimi, N., & Sannomiya, N. (1999). Autonomous decentralized scheduling algorithm for a job-shop scheduling problem with complicated constraints. In Proceedings of the 1999 4th international symposium on autonomous decentralized systems (pp. 366-369), Tokyo, Japan. Google Scholar
  23. Itoh, K., Huang, D., & Enkawa, T. (1993). Twofold look-ahead search for multi-criterion job shop scheduling. International Journal of Production Research, 31(9), 2215–2234. CrossRefGoogle Scholar
  24. Ivens, Ph., & Lambrecht, M. (1996). Extending the Shifting Bottleneck procedure to real-life applications. European Journal of Operational Research, 90, 252–268. CrossRefGoogle Scholar
  25. Kacem, I., Hammadi, S., & Borne, P. (2002). Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Mathematics and Computers in Simulation, 60, 245–276. CrossRefGoogle Scholar
  26. Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis. Boston: Mcgraw-Hill. Google Scholar
  27. Lee, Y. H., & Pinedo, M. Scheduling jobs in parallel machines with sequence dependent setup times, European Journal of Operational Research, 100, 464–474 Google Scholar
  28. Mason, S. J., Fowler, J. W., & Carlyle, W. M. (2002). A modified Shifting Bottleneck heuristic for minimizing total weighted tardiness in complex job shops. Journal of Scheduling, 5(3), 247–262. CrossRefGoogle Scholar
  29. Mason, S. J., Fowler, J. W., Carlyle, W. M., & Montgomery, D. C. (2005). Heuristics for minimizing total weighted tardiness in complex job shops. International Journal of Production Research, 43(10), 1943–1963. CrossRefGoogle Scholar
  30. Myers, R., & Montgomery, D. (1995). Response surface methodology. New York: Wiley. Google Scholar
  31. Nagar, A., Haddock, J., & Heragu, S. (1995). Multiple and bicriteria scheduling: a literature survey. European Journal of Operational Research, 81, 88–104. CrossRefGoogle Scholar
  32. Neacy, E., Brown, S., & McKiddie, R. Measurement and improvement of manufacturing capacity (MIMAC) survey and interview results. SEMATECH Technology Transfer #94052374A-XFR (1994) Google Scholar
  33. Ovacik, I. M., & Uzsoy, R. (1992). A Shifting Bottleneck algorithm for scheduling semiconductor testing operations. Journal of Electronic Manufacturing, 2, 119–134. CrossRefGoogle Scholar
  34. Pinedo, M. L., & Chao, X. (1999). Operations scheduling with applications in manufacturing and services. New York: Irwin/McGraw-Hill. Google Scholar
  35. Pinedo, M. L., & Singer, M. (1999). A Shifting Bottleneck heuristic for minimizing the total weighted tardiness in a job shop. Naval Research Logistics, 46, 1–17. CrossRefGoogle Scholar
  36. Rose, O., Mönch, L., & Sturm, R. (2002). Testing, comparison and implementation issues. In Proceedings of the 12th international conference on flexible automation and intelligent manufacturing, Dresden, Germany. Google Scholar
  37. Schutten, M. (1998). Practical job shop scheduling. Annals of Operational Research, 83, 161–177. CrossRefGoogle Scholar
  38. Semiconductor Industry Association (SIA) (2005). The international technology roadmap for semiconductors. http://public.itrs.net/.
  39. Singer, M. (2001). Decomposition methods for large job shops. Computers and Operation Research, 28, 193–207. CrossRefGoogle Scholar
  40. T’kindt, V. T., & Billaut, J.-C. (2006). Multicriteria scheduling: theory, models and algorithms (2nd ed.). Berlin: Springer. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michele E. Pfund
    • 1
  • Hari Balasubramanian
    • 2
  • John W. Fowler
    • 3
  • Scott J. Mason
    • 4
  • Oliver Rose
    • 5
  1. 1.Supply Chain Management DepartmentArizona State UniversityTempeUSA
  2. 2.Department of Health Sciences ResearchMayo ClinicRochesterUSA
  3. 3.Department of Industrial EngineeringArizona State UniversityTempeUSA
  4. 4.Department of Industrial EngineeringUniversity of ArkansasFayettevilleUSA
  5. 5.Institute for Applied Computer ScienceTechnical University of DresdenDresdenGermany

Personalised recommendations