Skip to main content
Log in

Seismic magnitude conversion and its effect on seismic hazard analysis

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The aim of this study is to demonstrate the bias created in the seismic hazard studies due to the choice of magnitude scaling equations without any statistical basis. The earthquake catalogue of Tripura, India, has been used for the purpose of this study. The catalogue was homogenized using the various scaling equations suitable for the region. Then, the bias created on parameters, like the magnitude of completeness (Mc), a and b values of the Gutenberg–Richter recurrence relation, maximum magnitude (Mmax), and peak ground acceleration, was demonstrated. The standard deviations of Mc, a, and b parameters were observed to be 0.23, 0.27, and 0.037 respectively. The maximum variations in the Mmax and ground motion estimates were found to be 0.7 magnitude units and 0.2 g respectively. Then, the robustness of the regional rupture characters in overcoming the observed variations has been demonstrated. The trend of the rupture behavior of the seismic sources seems to be unaffected by the change in the magnitude scaling equations. The Mmax calculated from the rupture-based procedure was observed to be higher than that calculated from the probabilistic method. This variation in Mmax estimation has been utilized to critically assess the suitability of the magnitude scaling equations for the particular study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Dover publications, New York, p 886

    Google Scholar 

  • Anbazhagan P, Bajaj K, Patel S (2015a) Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters. Nat Hazards 78(2):1163–1195

    Article  Google Scholar 

  • Anbazhagan P, Bajaj K, Moustafa SS, Al-Arifi NS (2015b) Maximum magnitude estimation considering the regional rupture character. J Seismol 19(3):695–719

    Article  Google Scholar 

  • Anderson JG, Wesnousky SG, Stirling MW (1996) Earthquake size as a function of fault slip rate. Bull Seismol Soc Am 86(3):683–690

    Google Scholar 

  • Baruah S, Baruah S, Bora PK, Duarah R, Kalita A, Biswas R, Gogoi N, Kayal JR (2012) Moment magnitude (MW) and local magnitude (ML) relationship for earthquakes in Northeast India. Pure Appl Geophys 169(11):1977–1988

    Article  Google Scholar 

  • Bender B (1983) Maximum likelihood estimation of b values for magnitude grouped data. Bull Seismol Soc Am 73(3):831–851

    Google Scholar 

  • Bora DK (2016) Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India. Earthq Sci 29(3):153–164

    Article  Google Scholar 

  • Castellaro S, Mulargia F, Kagan YY (2006) Regression problems for magnitudes. Geophys J Int 165(3):913–930

    Article  Google Scholar 

  • Das R, Wason HR, Sharma ML (2011) Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude. Nat Hazards 59(2):801–810

    Article  Google Scholar 

  • Das R, Wason HR, Sharma ML (2012a) Homogenization of earthquake catalog for northeast India and adjoining region. Pure Appl Geophys 169(4):725–731

    Article  Google Scholar 

  • Das R, Wason HR, Sharma ML (2012b) Temporal and spatial variations in the magnitude of completeness for homogenized moment magnitude catalogue for northeast India. J Earth Syst Sci 121(1):19–28

    Article  Google Scholar 

  • Das R, Sharma ML, Wason HR (2016) Probabilistic seismic hazard assessment for northeast India region. Pure Appl Geophys 173(8):2653–2670

    Article  Google Scholar 

  • Dasgupta S, Narula PL, Acharyya SK, Banerjee J (2000) Seismotectonic atlas of India and its environs. Geol Surv India

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Google Scholar 

  • Gasperini P, Lolli B, Vannucci G, Boschi E (2012) A comparison of moment magnitude estimates for the European—Mediterranean and Italian regions. Geophys J Int 190(3):1733–1745

    Article  Google Scholar 

  • Grünthal G, Wahlström R (2003) An M w based earthquake catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions. J Seismol 7(4):507–531

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res Solid Earth 84(B5):2348–2350

    Article  Google Scholar 

  • Hurukawa N, Maung Maung P (2011) Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocation of historical earthquakes since 1918. Geophys Res Lett 38(1)

  • IS 1893-Part 1 (2016) Criteria for earthquake resistant design of structures: general provisions and buildings. Bureau of Indian Standards, New Delhi

    Google Scholar 

  • Jin A, Aki K (1988) Spatial and temporal correlation between coda Q and seismicity in China. Bull Seismol Soc Am 78(2):741–769

    Google Scholar 

  • Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79(3):645–654

    Google Scholar 

  • Kijko A, Singh M (2011) Statistical tool for maximum possible earthquake magnitude estimation. Acta Geophys 59:674–700

    Article  Google Scholar 

  • Kolathayar S, Sitharam TG, Vipin KS (2012) Spatial variation of seismicity parameters across India and adjoining areas. Nat Hazards 60(3):1365–1379

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice–Hall international series in civil engineering and engineering mechanics. Prentice-Hall, New Jersey

    Google Scholar 

  • Last M, Rabinowitz N, Leonard G (2016) Predicting the maximum earthquake magnitude from seismic data in Israel and its neighboring countries. PloS One 11(1):e0146101

    Article  Google Scholar 

  • Lolli B, Gasperini P, Vannucci G (2014) Empirical conversion between teleseismic magnitudes (mb and Ms) and moment magnitude (M w) at the Global, Euro-Mediterranean and Italian scale. Geophys J Int 199(2):805–828

    Article  Google Scholar 

  • Nath SK, Vyas M, Pal I, Sengupta P (2005) A seismic hazard scenario in the Sikkim Himalaya from seismotectonics, spectral amplification, source parameterization, and spectral attenuation laws using strong motion seismometry. J Geophys Res Solid Earth 110(B1)

  • NDMA (2010) Development of probabilistic seismic hazard map of India; technical report by National Disaster Management Authority, Government of India

  • Omori F (1894) On the after-shocks of earthquakes. J Coll Sci Imp Univ Tokyo 7:111–200

    Google Scholar 

  • Osher B (1996) Statistical estimation of the maximum magnitude and its uncertainty from a catalogue including magnitude errors. In: Earthquake hazard and risk. Springer, Dordrecht, pp. 25-37

  • Pandey AK, Chingtham P, Roy PNS (2017) Homogeneous earthquake catalogue for northeast region of India using robust statistical approaches. Geomat Nat Haz Risk 8(2):1477–1491

    Article  Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res Solid Earth 90(B7):5479–5495

    Article  Google Scholar 

  • Rhoades DA (1996) Estimation of the Gutenberg-Richter relation allowing for individual earthquake magnitude uncertainties. Tectonophysics 258(1–4):71–83

    Article  Google Scholar 

  • Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25(1):1–32

    Google Scholar 

  • Scordilis EM (2006) Empirical global relations converting M S and m b to moment magnitude. J Seismol 10(2):225–236

    Article  Google Scholar 

  • Sil A, Sitharam TG, Kolathayar S (2013) Probabilistic seismic hazard analysis of Tripura and Mizoram states. Nat Hazards 68(2):1089–1108

    Article  Google Scholar 

  • Sitharam TG, Sil A (2014) Comprehensive seismic hazard assessment of Tripura and Mizoram states. J Earth Syst Sci 123(4):837–857

    Article  Google Scholar 

  • Stromeyer D, Grünthal G, Wahlström R (2004) Chi-square regression for seismic strength parameter relations, and their uncertainties, with applications to an M w based earthquake catalogue for central, northern and northwestern Europe. J Seismol 8(1):143–153

    Article  Google Scholar 

  • Thingbaijam KKS, Nath SK, Yadav A, Raj A, Walling MY, Mohanty WK (2008) Recent seismicity in northeast India and its adjoining region. J Seismol 12(1):107–123

    Article  Google Scholar 

  • Tinti S, Mulargia F (1985) Effects of magnitude uncertainties on estimating the parameters in the Gutenberg-Richter frequency-magnitude law. Bull Seismol Soc Am 75(6):1681–1697

    Google Scholar 

  • Uhrhammer RA (1986) Characteristics of northern and central California seismicity. Earthq Notes 57(1):21

    Google Scholar 

  • Wason HR, Das R, Sharma ML (2012) Magnitude conversion problem using general orthogonal regression. Geophys J Int 190(2):1091–1096

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28(1):211–280

    Article  Google Scholar 

Download references

Funding

The “Board of Research in Nuclear Sciences (BRNS),” Department of Atomic Energy (DAE), Government of India funded the project titled “Probabilistic seismic hazard analysis of Vizag and Tarapur considering regional uncertainties  & Studies of Tripura Earthquake and Liquefied Soil” (Ref No. Sanction No. 36(2)/14/16/2016-BRNS-36016 dated July 1st, 2016 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Anbazhagan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbazhagan, P., Balakumar, A. Seismic magnitude conversion and its effect on seismic hazard analysis. J Seismol 23, 623–647 (2019). https://doi.org/10.1007/s10950-019-09826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-019-09826-1

Keywords

Navigation