Skip to main content
Log in

Ground motions around a deep semielliptic canyon with a horizontal edge subjected to incident plane SH waves

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We study scattering of antiplane shear waves induced by a deep semielliptic canyon with a horizontal edge. We employ the region-point-matching technique to cope with the problem considered. Through an auxiliary boundary, a part of the circumference of a semiellipse, the whole analyzed region is divided into two subregions. We express the displacement fields in terms of Mathieu functions. We unify two distinct elliptic coordinates via a simple coordinate transformation relation. Integration of the coordinate transformation relation into the region-point-matching technique simplifies the procedure for constructing simultaneous equations. Imposing the continuity conditions and traction-free ones, we obtain the expansion coefficients. Frequency-domain results demonstrate ground motion variability based on several key factors. Ground surface responses under seismic shaking are also simulated in the time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions, with formulas, graphs, and mathematical tables. Dover, New York

    Google Scholar 

  • Achenbach JD (1973) Wave propagation in elastic solids. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Ansal A (2004) Recent advances in earthquake geotechnical engineering and microzonation. In: Geotechnical, Geological and Earthquake Engineering, Vol. 1. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Babuška I, Sauter S (1997) Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J Numer Anal 34(6):2392–2423

    Article  Google Scholar 

  • Boresi AP, Chong KP, Saigal S (2003) Approximate solution methods in engineering mechanics, 2nd edn. Wiley, New Jersey

    Google Scholar 

  • Bouchon M (1973) Effect of topography on surface motion. Bull Seismol Soc Am 63:615–632

    Google Scholar 

  • Chaillat S, Bonnet M, Semblat JF (2008) A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain. Comput Methods Appl Mech Eng 197:4233–4249

    Article  Google Scholar 

  • Chaillat S, Bonnet M, Semblat JF (2009) A new fast multi-domain BEM to model seismic wave propagation and amplification in 3-D geological structures. Geophys J Int 177:509–531

    Article  Google Scholar 

  • England R, Sabina FJ, Herrera I (1980) Scattering of SH waves by surface cavities of arbitrary shape using boundary methods. Phys Earth Planet Inter 21:148–157

    Article  Google Scholar 

  • Gazetas G, Kallou PV, Psarropoulos PN (2002) Topography and soil effects in the Ms 5.9 Parnitha (Athens) Earthquake: the case of Adámes. Nat Hazards 27:133–169

    Article  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series and products, 7th edn. Elsevier-Academic Press, Amsterdam

    Google Scholar 

  • Hatami M (2018) Weighted residual methods: principles, modifications and applications, 1st edn. Academic Press, UK

    Google Scholar 

  • Kennett BLN (2002) The seismic wavefield: volume II. In: Interpretation of seismograms on regional and global scales. Cambridge University Press, UK

    Google Scholar 

  • Kołodziej JA, Zieliński AP (2009) Boundary collocation techniques and their application in engineering. WIT Press, Southampton

    Google Scholar 

  • Li ZC, Lu TT, Hu HY, Cheng AHD (2008) Trefftz and collocation methods. WIT Press, Southampton

    Google Scholar 

  • Manolis GD, Dineva PS (2015) Elastic waves in continuous and discontinuous geological media by boundary integral equation methods: a review. Soil Dyn Earthq Eng 70:11–29

    Article  Google Scholar 

  • Moczo P, Kristek J, Galis M, Pazak P, Balazovjech M (2007) The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion. Acta Phys Slovaca 57:177–406

    Article  Google Scholar 

  • Mow CC, Pao YH (1971) The diffraction of elastic waves and dynamic stress concentrations, R-482-PR, U.S Air Force Project Rand

  • Narayan JP, Arafat MY, Kamal (2015) A numerical study of effects of valley-weathering and valley-shape-ratio on the ground motion characteristics. Acta Geophysica 63:154–175

    Article  Google Scholar 

  • Pagliaroli A, Lanzo G, D’Elia B (2011) Numerical evaluation of topographic effects at the Nicastro Ridge in Southern Italy. J Earthq Eng 15:404–432

    Article  Google Scholar 

  • Særmark K (1959) A note on addition theorems for Mathieu functions. Z Angew Math Phys 10:426–428

    Article  Google Scholar 

  • Sánchez-Sesma FJ, Rosenblueth E (1979) Ground motion at canyons of arbitrary shape under incident SH waves. Earthq Eng Struct Dyn 7:441–450

    Article  Google Scholar 

  • Sánchez-Sesma FJ, Palencia VJ, Luzón F (2002) Estimation of local site effects during earthquakes: an overview. ISET J Earthq Technol 39:167–193

    Google Scholar 

  • Semblat JF, Pecker A (2009) Waves and vibrations in soils: earthquakes, traffic, shocks, construction works. IUSS Press, Pavia

    Google Scholar 

  • Shah AH, Wong KC, Datta SK (1982) Diffraction of plane SH waves in a half-space. Earthq Eng Struct Dyn 10:519–528

    Article  Google Scholar 

  • Trifunac MD (1973) Scattering of plane SH waves by a semi-cylindrical canyon. Earthq Eng Struct Dyn 1:267–281

    Article  Google Scholar 

  • Tsaur DH, Chang KH (2008) An analytical approach for the scattering of SH waves by a symmetrical V-shaped canyon: shallow case. Geophys J Int 174:255–264

    Article  Google Scholar 

  • Tsaur DH, Chang KH (2009) Scattering of SH waves by truncated semicircular canyon. J Eng Mech ASCE 135:862–870

    Article  Google Scholar 

  • Tsaur DH, Chang KH, Hsu MS (2010) An analytical approach for the scattering of SH waves by a symmetrical V-shaped canyon: deep case. Geophys J Int 183:1501–1511

    Article  Google Scholar 

  • Wong HL, Jennings PC (1975) Effects of canyon topography on strong ground motion. Bull Seismol Soc Am 65:1239–1257

    Google Scholar 

  • Wong HL, Trifunac MD (1974) Scattering of plane SH waves by a semi-elliptical canyon. Earthq Eng Struct Dyn 3:157–169

    Article  Google Scholar 

  • Wuttke F, Fontara IK, Dineva P, Rangelov T (2015) SH-wave propagation in a continuously inhomogeneous half-plane with free-surface relief by BIEM. Z Angew Math Mech 95:714–729

    Article  Google Scholar 

  • Zhang C, Liu Q, Deng P (2015) Antiplane scattering of SH waves by a trapezoidal valley with a circular-arc alluvium in an elastic half space. J Earthq Tsunami 9:1550008

    Article  Google Scholar 

  • Zhao C (2009) Dynamic and transient infinite elements: theory and geophysical, geotechnical and geoenvironmental applications, Advances in geophysical and environmental mechanics and mathematics. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Zhou H, Chen X (2006) A new approach to simulate scattering of SH waves by an irregular topography. Geophys J Int 164:449–459

    Article  Google Scholar 

Download references

Acknowledgments

Particular thanks go to the Editor, Prof. Alessia Maggi, and two reviewers for their encouragement and the insightful and valuable suggestions and comments that have improved this paper.

Funding

The first author is sincerely grateful for the financial support granted by the Ministry of Science and Technology (former National Science Council), Taiwan, Republic of China (Project No. NSC 99-2221-E-019-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kao-Hao Chang.

Appendix. Expressions of associated functions in Eqs. (20)–(23)

Appendix. Expressions of associated functions in Eqs. (20)–(23)

In Eqs. (20)–(23), the self-defined functions are listed as follows:

$$ {G}_1\left(\eta \right)={ce}_{2n}\left(\eta, q\right), $$
(27)
$$ {G}_2\left(\eta \right)={se}_{2n+1}\left(\eta, q\right), $$
(28)
$$ {\displaystyle \begin{array}{l}R\left(\eta \right)=-4\kern0.2em \sum \limits_{n=0}^{N_0-1}\kern0.2em {\left(-1\right)}^{n+1}{Mc_{2n}^{(1)}}^{\prime}\left({\xi}_d,q\right){ce}_{2n}\left(\alpha, q\right){ce}_{2n}\left(\eta, q\right)\\ {}\kern2em -4\kern0.2em i\kern0.3em \sum \limits_{n=0}^{N_0-1}\kern0.2em {\left(-1\right)}^{n+1}{Ms}_{2n+1}^{(1)\prime}\left({\xi}_d,q\right){se}_{2n+1}\left(\alpha, q\right){se}_{2n+1}\left(\eta, q\right)\\ {}\kern2em -2\kern0.2em i\kern0.1em k\kern0.1em b\exp \left(-2\kern0.2em i\kern0.1em k\kern0.1em b\sinh {\xi}_d\sin \eta \sin \alpha \right)\cosh {\xi}_d\sin \eta \sin \alpha, \end{array}} $$
(29)

where the first two terms and the last one at the right-hand side of Eq. (29) come from the differentiation of Eqs. (10) and (7), respectively.

$$ {\tilde{G}}_1\left(\eta \right)=\frac{Mc_{2n}^{(3)}\left({\xi}_d,q\right)}{{Mc_{2n}^{(3)}}^{\prime}\left({\xi}_d,q\right)}{ce}_{2n}\left(\eta, q\right), $$
(30)
$$ {\tilde{G}}_2\left(\eta \right)=\frac{Ms_{2n+1}^{(3)}\left({\xi}_d,q\right)}{Ms_{2n+1}^{(3)\prime}\left({\xi}_d,q\right)}{se}_{2n+1}\left(\eta, q\right), $$
(31)
$$ {\tilde{L}}_1\left(\eta \right)=\frac{-{Mc}_{2n}^{(1)}\left[{T}_R\left({\xi}_d,\eta \right),q\right]{ce}_{2n}\left[{T}_I\left({\xi}_d,\eta \right),q\right]}{{Mc_{2n}^{(1)}}^{\prime}\left({\xi}_d,q\right)}, $$
(32)
$$ {\tilde{L}}_2\left(\eta \right)=\frac{-{Ms}_{2n+1}^{(1)}\left[{T}_R\left({\xi}_d,\eta \right),q\right]{se}_{2n+1}\left[{T}_I\left({\xi}_d,\eta \right),q\right]}{Ms_{2n+1}^{(1)\prime}\left({\xi}_d,q\right)}, $$
(33)
$$ {\displaystyle \begin{array}{l}\tilde{R}\left(\eta \right)=-4\kern0.2em \sum \limits_{n=0}^{\infty}\kern0.2em {\left(-1\right)}^{n+1}\frac{{Mc_{2n}^{(1)}}^{\prime}\left({\xi}_d,q\right)}{{Mc_{2n}^{(3)}}^{\prime}\left({\xi}_d,q\right)}{ce}_{2n}\left(\alpha, q\right){Mc}_{2n}^{(3)}\left({\xi}_d,q\right){ce}_{2n}\left(\eta, q\right)\\ {}\kern2em -4\kern0.2em i\kern0.3em \sum \limits_{n=0}^{\infty}\kern0.2em {\left(-1\right)}^{n+1}\frac{Ms_{2n+1}^{(1)\prime}\left({\xi}_d,q\right)}{Ms_{2n+1}^{(3)\prime}\left({\xi}_d,q\right)}{se}_{2n+1}\left(\alpha, q\right){Ms}_{2n+1}^{(3)}\left({\xi}_d,q\right){se}_{2n+1}\left(\eta, q\right)\\ {}\kern2em -2\exp \kern0.2em \left(-i\kern0.2em k\kern0.1em b\sinh \kern0.2em {\xi}_d\kern0.2em \sin \kern0.2em \eta \sin \kern0.2em \alpha \right)\cos \kern0.2em \left(k\kern0.1em b\cosh \kern0.2em {\xi}_d\cos \kern0.2em \eta \cos \kern0.2em \alpha \right),\end{array}} $$
(34)
$$ {\displaystyle \begin{array}{l}{L}_1\left(\eta \right)=\frac{-1}{{Mc_{2n}^{(1)}}^{\prime}\left({\xi}_d,q\right)}\cdot \\ {}\kern2em \left\{{Mc_{2n}^{(1)}}^{\prime}\left[{T}_R\left({\xi}_d,\eta \right),q\right]{ce}_{2n}\left[{T}_I\left({\xi}_d,\eta \right),q\right]\right.\operatorname{Re}\kern0.2em \left[\frac{\partial T\left({\xi}_d,\eta \right)}{\partial \xi}\right]\\ {}\kern1.75em +\left.{Mc}_{2n}^{(1)}\left[{T}_R\left({\xi}_d,\eta \right),q\right]{ce}_{2n}^{\prime}\left[{T}_I\left({\xi}_d,\eta \right),q\right]\operatorname{Im}\kern0.2em \left[\frac{\partial T\left({\xi}_d,\eta \right)}{\partial \xi}\right]\right\},\end{array}} $$
(35)
$$ {\displaystyle \begin{array}{l}{L}_2\left(\eta \right)=\frac{-1}{Ms_{2n+1}^{(1)\prime}\left({\xi}_d,q\right)}\cdot \\ {}\kern2em \left\{{Ms}_{2n+1}^{(1)\prime}\left[{T}_R\left({\xi}_d,\eta \right),q\right]{se}_{2n+1}\left[{T}_I\left({\xi}_d,\eta \right),q\right]\operatorname{Re}\kern0.2em \left[\frac{\partial T\left({\xi}_d,\eta \right)}{\partial \xi}\right]\right.\\ {}\kern1.75em +\left.{Ms}_{2n+1}^{(1)}\left[{T}_R\left({\xi}_d,\eta \right),q\right]{se}_{2n+1}^{\prime}\left[{T}_I\left({\xi}_d,\eta \right),q\right]\operatorname{Im}\kern0.2em \left[\frac{\partial T\left({\xi}_d,\eta \right)}{\partial \xi}\right]\right\},\end{array}} $$
(36)

in which the primes stand for differentiation with respect to the argument ξ of pertinent functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsaur, DH., Chang, KH. & Hsu, MS. Ground motions around a deep semielliptic canyon with a horizontal edge subjected to incident plane SH waves. J Seismol 22, 1579–1593 (2018). https://doi.org/10.1007/s10950-018-9787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-018-9787-0

Keywords

Navigation