Advertisement

Journal of Seismology

, Volume 20, Issue 2, pp 475–494 | Cite as

Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times

  • Chao-ying Bai
  • Tao Wang
  • Shang-bei Yang
  • Xing-wang Li
  • Guo-jiao Huang
Original Article

Abstract

Traditional traveltime inversion for anisotropic medium is, in general, based on a “weak” assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both “weak” and “strong”) anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including “strong”) anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.

Keywords

Multistage irregular shortest-path ray tracing Non-linear inversion solver TTI medium Elastic parameters Later arrival Simultaneous anisotropic parameter inversion 

Notes

Acknowledgments

This research work was partially supported by China National Major Science and Technology Project (subproject no: 2011ZX05024-001-03), the Doctoral Programming Research Fund of Higher Education, Chinese Ministry of Education (Project No: 20110205110010), and the Natural Science Foundation of China (NSFC, project no: 41504038).

References

  1. Aki K, Christofferson A, Husebye E (1977) Determination of the three-dimensional seismic structure of the lithosphere. J Geophys Res 82:277–296CrossRefGoogle Scholar
  2. Alkhalifah T (2002) Traveltime computation with the linearized eikonal equation for anisotropic media. Geophys Prospect 50:373–382CrossRefGoogle Scholar
  3. Anderson DL, Dziewonski AM (1982) Upper mantle anisotropy: evidence from free oscillation. Geophys J R Astron Soc 69:383–404CrossRefGoogle Scholar
  4. Bai CY, Greenhalgh S (2005) 3-D non-linear travel time tomography: Imaging high contrast velocity anomalies. Pure Appl Geophys 162:2029–2049CrossRefGoogle Scholar
  5. Bai CY, Greenhalgh S, Zhou B (2007) 3-D ray tracing by using a modified shortest-path method. Geophysics 72:T27–T36CrossRefGoogle Scholar
  6. Bai CY, Huang GJ, Zhao R (2010) 2D/3D irregular shortest-path raytracing for multiple arrivals and its applications. Geophys J Int 183:1596–1612CrossRefGoogle Scholar
  7. Bai CY, Huang GJ, Li XL, Zhou B, Greenhalgh S (2013) Ray tracing of multiply transmitted/reflected/converted waves in 2D/3D layered anisotropic TTI media and application to crosswell traveltime tomography. Geophys J Int 195:1068–1087CrossRefGoogle Scholar
  8. Bai CY, Hu GY, Zhang YT, Li ZS (2014a) Seismic wavefield propagation in 2D anisotropic media: Ray theory via wave-equation simulation. J Appl Geophys 104:163–171CrossRefGoogle Scholar
  9. Bai CY, Huang GJ, Li XW, Greenhalgh S (2014b) 3D simultaneous traveltime inversion for velocity structure, hypocenter locations and reflector geometry using multiple classes of arrivals. Pure Appl Geophys. doi: 10.1007/s00024-014-0945-1 Google Scholar
  10. Bai CY, Huang GJ, Li XW, Greenhalgh S (2015) 3D simultaneous traveltime inversion for velocity structure, hypocenter locations and reflector geometry using multiple classes of arrivals. Pure Appl Geophys 172:2601–2620Google Scholar
  11. Cerveny V (1972) Seismic rays and ray intensities in inhomogenous anisotropic media. Geophys J R Astron Soc 29:1–13CrossRefGoogle Scholar
  12. Cerveny V, Firbas P (1984) Numerical modelling and inversion of travel-times of seismic body waves in inhomogeneous anisotropic media. Geophys J R Astron Soc 76:41–51CrossRefGoogle Scholar
  13. Chapman CH, Miller DE (1996) Velocity sensitivity in transversely isotropic media. Geophys Prospect 44:525–549CrossRefGoogle Scholar
  14. Chapman CH, Pratt RG (1992) Traveltime tomography in anisotropic media—I Theory. Geophys J Int 109:1–19CrossRefGoogle Scholar
  15. Crampin S (1981) A review of wave motion in anisotropic and cracked elastic-media. Wave Motion 3:343–391CrossRefGoogle Scholar
  16. Crampin S (1984) Effective anisotropic constants for wave-propagation through cracked solids. J R Astron Soc 76:135–145CrossRefGoogle Scholar
  17. Eberhart-Philips D, Henderson CM (2004) Including anisotropy in 3-D velocity inversion and application to Marlborough, New Zealand. Geophys J Int 156:237–254CrossRefGoogle Scholar
  18. Farra V, Le Begat S (1995) Sensitivity of qP-wave traveltimes and polarization vector to heterogeneity, anisotropy, and interfaces. Geophys J Int 121:371–384CrossRefGoogle Scholar
  19. Gajewski D, Psencik I (1987) Computation of high-frequency seismic wavefields in 3-D lateral inhomogenous, anisotropic media. Geophys J R Astron Soc 91:383–411CrossRefGoogle Scholar
  20. Greenhalgh SA, Zhou B, Green A (2006) Solutions, algorithms and inter-relations for local minimization search geophysical inversion. J Geophys Eng 3:101–113CrossRefGoogle Scholar
  21. Hanyga A (1982) The kinematic inversion problem for weakly laterally inhomogenous anisotropic media. Tectonophysics 90:253–262CrossRefGoogle Scholar
  22. Helbig K (1981) Systematic classification of layered-induced transverse isotropy. Geophys Prospect 29:550–577CrossRefGoogle Scholar
  23. Hirahara K, Ishikawa Y (1984) Traveltime inversion for three-dimentonal P-wave velocity anisotropy. J Phys Earth 32:197–218CrossRefGoogle Scholar
  24. Huang GJ, Bai CY, Zhu DL, Greenhalgh S (2012) 2D/3D seismic simultaneous inversion for velocity model and interface geometry using multiple classes of arrivals. Bull Seismol Soc Am 102:790–801CrossRefGoogle Scholar
  25. Jech J (1988) Three-dimensional inverse problem for inhomogeneous transversely isotropic media. Stud Geophys Geod 32:136–143CrossRefGoogle Scholar
  26. Jech J, Psencik I (1989) First-order perturbation method for anisotropic media. Geophys J Int 99:369–376CrossRefGoogle Scholar
  27. Nolet G (1987) Seismic Wave Propagation and Seismic Tomography, in‘Seismic Tomography with Applications in Global Seismology and Exploration Geophysics’. D. Reidel Publ. Co, DordrechtGoogle Scholar
  28. Nolet G, Allen R, Zhao D (2007) Mantle plume tomography. Chem Geol 241:248–263CrossRefGoogle Scholar
  29. Pratt RG, Chapman CH (1992) Traveltime tomography in anisotropic media—II Application. Geophys J Int 109:20–37CrossRefGoogle Scholar
  30. Qian J, Symes WW (2002) An adaptive finite-difference method for traveltimes and amplitudes. Geophysics 67:167–176CrossRefGoogle Scholar
  31. Rawlinson N, Sambridge M (2004a) Seismic traveltime tomography of the crust and lithosphere. Adv Geophys 46:81–197CrossRefGoogle Scholar
  32. Rawlinson N, Sambridge M (2004b) Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics 69:1338–1350CrossRefGoogle Scholar
  33. Romanowicz B (2003) Global mantle tomography: progress status in the past 10 years. Annu Rev Earth Planet Sci 31:303–328CrossRefGoogle Scholar
  34. Shearer PM, Chapman CH (1988) Ray tracing in anisotropic media with a linear gradient. Geophys J Int 94:575–580CrossRefGoogle Scholar
  35. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966CrossRefGoogle Scholar
  36. Watanabe T, Hirai T, Sassa K (1996) Seismic traveltime tomography in anisotropic heterogeneous media. J Appl Geophys 35:133–143CrossRefGoogle Scholar
  37. Wu H, Lees JM (1999) Cartesian parameterization of anisotropic traveltime tomography. Geophys J Int 137:64–80CrossRefGoogle Scholar
  38. Zelt BC, Ellis RM, Zelt CA, Hyndman RD, Lowe C, Spence GD, Fisher MA (2001) Three-dimensional crustal velocity structure beneath the Strait of Georgia, British Columbia. Geophys J Int 144:695–712CrossRefGoogle Scholar
  39. Zhao D, Kayal JR (2000) Impact of seismic tomography on Earth sciences. Curr Sci 79:1208–1214Google Scholar
  40. Zheng X (2004) Inversion for elastic parameters in a weakly anisotropic medium. Geophys J Int 159:1077–1089CrossRefGoogle Scholar
  41. Zhou B, Greenhalgh SA (2004) On the computation of elastic wave group velocity for a general anisotropic medium. J Geophys Eng 1:205–215CrossRefGoogle Scholar
  42. Zhou B, Greenhalgh SA (2005a) ‘Shortest path’ ray tracing for the most general anisotropic 2D/3D anisotropic media. J Geophys Eng 2:54–63CrossRefGoogle Scholar
  43. Zhou B, Greenhalgh SA (2005b) Analytic expressions for the velocity sensitity to the elastic moduli for the most general anisotropic media. Geophys Prospect 53:619–641CrossRefGoogle Scholar
  44. Zhou B, Greenhalgh SA (2008a) Nonlinear traveltime inversion scheme for crosshole seismic tomography in titled transversly isotropic media. Geophysics 73:D17–D33CrossRefGoogle Scholar
  45. Zhou B, Greenhalgh SA (2008b) Nonlinear traveltime inversion for 3D seismic tomography in strongly anisotropic media. Geophys J Int 172:383–394CrossRefGoogle Scholar
  46. Zhou B, Greenhalgh S, Sinadinovski C (1992) Iterative algorithm for the damped minimum norm, least-squares and constrained problem in seismic tomography. Explor Geophys 23:497–505CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Chao-ying Bai
    • 1
    • 2
  • Tao Wang
    • 1
    • 3
  • Shang-bei Yang
    • 1
  • Xing-wang Li
    • 1
  • Guo-jiao Huang
    • 4
  1. 1.Department of Geophysics, College of Geology Engineering and GeomaticsChang’an UniversityXi’anChina
  2. 2.Institute of Computing GeophysicsChang’an UniversityXi’anChina
  3. 3.Shaanxi railway InstituteWeinanChina
  4. 4.Department of Geology Science and Engineering, School of Earth Sciences and EngineeringHohai UniversityNanjingChina

Personalised recommendations