Journal of Seismology

, Volume 20, Issue 1, pp 291–304 | Cite as

Frictional strength and heat flow of southern San Andreas Fault

  • P. P. Zhu
Original Article


Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called “fault friction heat.” On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault friction heat at various seismogenic depths in the southern SAF. The new data show that as depth increases, regional friction stress increases within the depth of 15 km; its increment per kilometer equals 5.75 ± 0.05 MPa/km. As depth increases, regional long-term fault friction heat increases; its increment per kilometer is equal to 3.68 ± 0.03 mW/m2/km. The values of regional long-term fault friction heat provided by this study are always lower than those from heat flow measurements. The difference between them and the scatter existing in the measured heat flow data are mainly caused by the following processes: (i) heat convection, (ii) heat advection, (iii) stress accumulation, (iv) seismic bursts between short-term lull periods in a long-term period, and (v) influence of seismicity in short-term periods upon long-term slip rate and heat flow. Fault friction heat is a fundamental parameter in research on heat flow.


Frictional strength Heat flow Southern San Andreas Fault Shear stress Normal stress Friction stress Friction coefficient Fault friction heat Slip rate 


  1. Brune JN, Henry TL, Roy RF (1969) Heat flow, stress, and rate of slip along the San Andreas fault, California. J Geophys Res 74:3821–3827CrossRefGoogle Scholar
  2. Byerlee JD (1978) Frictions of rocks. Pure Appl Geophys 116:615–629CrossRefGoogle Scholar
  3. Carpenter BM, Saffer DM, Marone C (2012) Frictional properties and sliding stability of the San Andreas fault from deep drill core. Geology 40:759–762. doi: 10.1130/G33007 CrossRefGoogle Scholar
  4. Chéry J, Zoback MD, Hassani R (2001) An integrated mechanical model of the San Andreas Fault in central and northern California. J Geophys Res 106(B10):22051–22066. doi: 10.1029/2001JB000382 CrossRefGoogle Scholar
  5. Chéry J, Zoback MD, Hickman S (2004) A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements. Geophys Res Lett 31:L15S13. doi: 10.1029/2004GL019521 CrossRefGoogle Scholar
  6. Delan JF, Bowman DD, Sammis CG (2007) Long-range and long-term fault interactions in Southern California. Geology 35(9):855–858. doi: 10.1130/G23789A.1 CrossRefGoogle Scholar
  7. Di Toro G, Han R, Hirose T, Nirose T, De Raola N, Nielsen G, Mizoguchi K, Ferri F, Cocco M, Shimamoto T (2011) Fault lubrication during earthquakes. Nature 471:494–498. doi: 10.1038/nature09838 CrossRefGoogle Scholar
  8. Dough DI, Dough WL (1987) Stress near the surface of earth. Annu Rev Earth Planet Sci 15:545–566. doi: 10.1146/annurev.ea.15.050187.002553 CrossRefGoogle Scholar
  9. Fay N, Humphreys E (2006) Dynamics of the Salton blocks: absolute fault strength and crust-mantle coupling in Southern California. Geology 34(4):261–264CrossRefGoogle Scholar
  10. Fialko Y, Rivera L, Kanamori H (2005) Estimate of differential stress in the upper crust from variations in topography and strike along the San Andreas fault. Geophys J Int 160(2):527–532CrossRefGoogle Scholar
  11. Fulton PM, Saffer DM, Harris RN, Bekins BA (2004) Re-evaluation of heat flow data near Parkfield, CA: evidence for a weak San Andreas Fault. Geophys Res Lett 31:L15S15. doi: 10.1029/2003GL019378 CrossRefGoogle Scholar
  12. Grantz A, Dickinson WR (1968) Indicated cumulative offsets along the San Andreas ult fault in the California Coast Ranges. In: Dickinson WR, Grantz A (eds) Proceedings f of conference on geologic problems of San Andreas fault system, vol 11. Stanford University Publications in the Geological Sciences, Stanford, pp 117–120Google Scholar
  13. Hamamoto H, Yamano M, Goto S (2005) Heat flow measurement in shallow seas through long-term temperature monitoring. Geophys Res Lett 32:L21311. doi: 10.1029/2005GL024138 CrossRefGoogle Scholar
  14. Hardebeck JL, Hauksson E (2001) Crustal stress field in southern California and its implications for fault mechanics. J Geophys Res 106(B10):21859–21882CrossRefGoogle Scholar
  15. Henrys SA, Ellis S, Uruski C (2003) Conductive heat flow variations from bottom- simulating reflectors on the Hikurangi margin, New Zealand. Geophys Res Lett 30:1065. doi: 10.1029/2002GL015772 CrossRefGoogle Scholar
  16. Herbert JW, Cooke ML, Oskin M, Difo O (2013) How much can off-fault deformation contribute to the slip rate discrepancy within the eastern California shear zone? Geology 42(1):71–75. doi: 10.1130/G34738.1 CrossRefGoogle Scholar
  17. Hickman S, Zoback M (2004) Stress orientations and magnitudes in the SAFOD pilot hole. Geophys Res Lett 31:L15S12. doi: 10.1029/2004GL020043 Google Scholar
  18. Hou L, Ma S, Shimamoto T, Chen J, Yao L, Yang X, Okimura Y (2012) Internal structures and high-velocity frictional properties of a bedding-parallel carbonate fault at Xiaojiaqiao outcrop activated by the 2008 Wenchuan earthquake. Earthq Sci 25(3):197–217CrossRefGoogle Scholar
  19. Ikari MJ, Niemeijer AR, Marone C (2011) The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure. J Geophys Res 116:B08404. doi: 10.1029/2011JB008264 Google Scholar
  20. Jaeger JC (1956) Elasticity, Fracture, and Flow. John Wiley, New YorkGoogle Scholar
  21. Johnson KM (2013a) Is stress accumulating on the creeping section of the San Andreas fault? Geophys Res Lett 40:6101–6105. doi: 10.1002/2013GL058184 CrossRefGoogle Scholar
  22. Johnson KM (2013b) Slip rates and off-fault deformation in Southern California inferred from GPS data and models. J Geophys Res Solid Earth 118:5643–5664. doi: 10.1002/jgrb.50365 CrossRefGoogle Scholar
  23. Jost ML, Büßelberg T, Jost O, Harjes H (1998) Source parameters of injection- induced micro-earthquakes at 9 km depth at the KTB Deep Drilling site, Germany. Bull Seismol Soc Am 88(3):815–832Google Scholar
  24. Keys WS, Wolff RG, Bredehoeft JD, Shuter E, Healy JH (1979) In situ stress measurements near the San Andreas fault in Central California. J Geophys Res 84(B4):1583–1591CrossRefGoogle Scholar
  25. Kohli AH, Zoback MD (2013) Frictional properties of shale reservoir rocks. J Geophys Res Solid Earth 118:5109–5125. doi: 10.1002/jgrb.50346 CrossRefGoogle Scholar
  26. Lachenbruch AH (1986) Simple models for the estimation and measurement of frictional heating by an earthquake. U S Geol Surv Open File Rep 86–508, 13pGoogle Scholar
  27. Lachenbruch AH, McGarr A (1990) Chapter 10: stress and heat flow. In: Wallace RE (ed) The San Andreas Fault System, California, US Geological Survey, Professional Paper 1515. Or (2009)
  28. Lachenbruch AH, Sass JH (1980) Heat flow and energetics of the San Andreas Fault Zone. J Geophys Res 85:6185–6222CrossRefGoogle Scholar
  29. Li Q, Tullis TE, Goldsby D, Carpick RW (2013) Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480:233–236. doi: 10.1038/nature10589 CrossRefGoogle Scholar
  30. Lockner DA, Okubo PG (1983) Measurements of frictional heating in granite. J Geophys Res 88(B5):4313–4320CrossRefGoogle Scholar
  31. Lockner DA, Morrow D, Hickman S (2011) Low strength of San Andreas fault gouge from SAFOD core. Nature 472:82–85. doi: 10.1038/nature09927 CrossRefGoogle Scholar
  32. Matsuzawa T, Shibazaki B, Obara K, Hirose H (2013) Comprehensive model of short- and long-term slow slip events in the Shikoku region of Japan, incorporating a realistic plate configuration. Geophys Res Lett 40:5125–5130. doi: 10.1002/grl.51006 CrossRefGoogle Scholar
  33. McGarr A (1999) On relating apparent stress to the stress causing earthquake fault slip. J Geophys Res 104(B2):3003–3011CrossRefGoogle Scholar
  34. McGarr A, Zoback MD, Hanks TC (1982) Implications of an elastic analysis of in situ stress measurements near the San Andreas fault. J Geophys Res 87:7797–7806CrossRefGoogle Scholar
  35. Morrow C, Radney B, Byerlee J (1992) Chapter 3 Frictional strength and the effective pressure law of montmorillonite and illite clays. In: Fault Mechanics and Transport Properties of Rocks. Academic Press. Or (2009)
  36. Mount V, Suppe J (1987) State of stress near the San Andreas fault: implications for wrench tectonics. Geology 15:1143–1146CrossRefGoogle Scholar
  37. Niemeijei AR, Collettini C (2013) Frictional properties of a low-angle normal fault under in situ conditions: thermally-activated velocity weakening. Pure Appl Geophys 170(12):2122–2133. doi: 10.1007/s00024-013-0759-6 Google Scholar
  38. Plesch A, Shaw JH, Benson C, Bryant WA, Carena S, Cooke M, Dolan J, Fuis G, Gath E, Grant L, Hauksson E, Jordan T, Kamerling M et al (2007) Community Fault Model (CFM) for Southern California. Bull Seismol Soc Am 97:1793–1802. doi: 10.1785/0120050211 CrossRefGoogle Scholar
  39. Popek MA, Saffer DM (2011) Heat advection by groundwater flow through a heterogeneous permeability crust: a potential cause of scatter in surface heat flow near Parkfield, California. J Geophys Res 116:B03404. doi: 10.1029/2010JB008081 Google Scholar
  40. Read T, Bour O, Bense V, Le Borgne T, Goderniaux P, Klepikova MV, Ochreutener R, Lavenant N, Boschero V (2013) Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing. Geophys Res Lett 40:2055–2059. doi: 10.1002/grl.50397 CrossRefGoogle Scholar
  41. SAFOD (2008–2010) Please see San Andreas Fault Observatory at Depth conducted measurements and experiments in 2008–2010 at its web-site:
  42. Scholz CH (2000) Evidence for a strong San Andreas Fault. Geology 28(2):163–166CrossRefGoogle Scholar
  43. Shcherbakov R, Goda K, Ivanian A, Atkinson GM (2013) Aftershock Statistics of Major Subduction Earthquakes. Bull Seismol Soc Am 103:3222–3234. doi: 10.1785/0120120337 CrossRefGoogle Scholar
  44. Si J, Li H, Kuo L, Pei J, Song S, Wang H (2013) Clay mineral anomalies in the Yingxiu–Beichuan fault zone from the WFSD-1 drilling core and its implication for the faulting mechanism during the 2008 Wenchuan earthquake (Mw 7.9), Tectonophysics, Available online 26 September 2013Google Scholar
  45. So B-D, Yuen DA (2013) Influences of temperature-dependent thermal conductivity on surface heat flow near major faults. Geophys Res Lett 40:3868–3872. doi: 10.1002/grl.50780 CrossRefGoogle Scholar
  46. Townend J, Zoback M (2004) Regional tectonic stress near the San Andreas Fault in central and southern California. Geophys Res Lett 31:L15S11. doi: 10.1029/2003GL018918 CrossRefGoogle Scholar
  47. Tsutsumi A, Fabbri O, Karpoff AM, Ujiie K, Tsuimoto A (2011) Friction velocity dependence of clay-rich fault material along a megasplay fault in the Nankai subduction zone at intermediate to high velocities. Geophys Res Lett 38:L19301. doi: 10.1029/2011GL049314 CrossRefGoogle Scholar
  48. van der Woerd J, Klinger Y, Sieh K, Tapponnier P, Ryerson FJ, Mériaux A-S (2006) Long-term slip rate of the southern San Andreas Fault from 10Be-26Al surface exposure dating of an offset alluvial fan. J Geophys Res 111:B04407. doi: 10.1029/2004JB003559 Google Scholar
  49. Venkataraman A, Kanamori H (2004) Observational constraints on the fracture energy of subduction zone earthquakes. J Geophys Res 109:B05302. doi: 10.1029/2g003JB002549 Google Scholar
  50. Verberne BA, Spiers CJ, Niemeijer AR, De Bresser LHP, De Winter DAM, Plumper O (2013) Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities. Pure Appl Geophys 170(12):2012–2035. doi: 10.1007/s00024-013-0760-0 Google Scholar
  51. Wallace RE (1990), Chapter 1: general features. In: Wallace RE (ed) The San Andreas Fault System, California, US Geological Survey, Professional Paper 1515. Or (2009)
  52. Webb PC, Lee MK, Brown GC (1987) Heat flow - heat production relationships in the UK and the vertical distribution of heat production in granite batholiths. Geophys Res Lett 14(3):279–282. doi: 10.1029/GL014i003p00279 CrossRefGoogle Scholar
  53. Williams CF, Grubb FV, Galanis SP Jr (2004) Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault. Geophys Res Lett 31:L15S14. doi: 10.1029/2003GL019352 Google Scholar
  54. Zhang L, He C (2013) Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan Mw7.9 earthquake. Tectonophysics 5949(24):149–164CrossRefGoogle Scholar
  55. Zhu PP (2013) Normal and shear stresses acting on arbitrarily oriented faults, earthquake energy, crustal GPE change and the coefficient of friction. J Seismol 17(3):985–1000. doi: 10.1007/s10950-013-9367-2, CrossRefGoogle Scholar
  56. Zoback MD, Healy JH (1992) In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: implications for the mechanics of crustal faulting. J Geophys Res 97(B4):5039–5057CrossRefGoogle Scholar
  57. Zoback MD, Roller JC (1979) Magnitude of shear stress on the San Andreas Fault: implications of a stress measurement profile at shallow depth. Science 206:445–447CrossRefGoogle Scholar
  58. Zoback MD, Healy JH, Roller JC (1977) Preliminary stress measurements in central California using the hydraulic fracturing technique. Pure Appl Geophys 115:135–152CrossRefGoogle Scholar
  59. Zoback MD, Tsukahara H, Hickman SH (1980) Stress measurements at depth in the vicinity of the San Andreas Fault: implications for the magnitude of shear stress at depth. J Geophys Res 85(B11):6157–6173CrossRefGoogle Scholar
  60. Zoback MD, Zoback ML, Mount VS, Suppe J, Eaton JP, Healy JH, Oppenheimer DH, Reasenberg PA, Jones LM, Raleigh CB, Wong LG, Scotti O, Wentworth CM (1987) New evidence on the state of stress of the San Andreas Fault system. Science 228(4830):1105–1111CrossRefGoogle Scholar
  61. Zoback MD, Barton CA, Brudy M, Castillo DA, Finkbeiner T, Grollimund BR, Moos DB, Peska P, Ward CD, Wiprut DJ (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40:1049–1076CrossRefGoogle Scholar
  62. Zoback MD, Hickman S, Ellsworth WE (2007) The role of fault zone drilling. In: Kanamori H, Schubert G (eds) Earthquake seismology: treatise on geophysics, vol 4. Elsevier, Amsterdam, pp 649–674CrossRefGoogle Scholar
  63. Zoback MD, Hickman S, Ellsworth WL (2010) Scientific drilling into the San Andreas Fault. Trans Am Geophys Union 91(22):197–204. doi: 10.1029/2010EO220001 CrossRefGoogle Scholar
  64. Zoback MD, Hickman S, Ellsworth WL, and the SAFOD science team (2011) Scientific drilling into the San Andreas Fault zone—an overview of SAFOD’s first five years. Sci Drill 11:14–28. doi: 10.2204/ CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.GEO Research InstituteMilpitasUSA

Personalised recommendations