Journal of Seismology

, Volume 19, Issue 4, pp 969–988 | Cite as

Rupture process of 2011 Mw7.1 Van, Eastern Turkey earthquake from joint inversion of strong-motion, high-rate GPS, teleseismic, and GPS data

Original Article


We analyzed the rupture process of the 2011 Mw7.1 Van, Eastern Turkey earthquake using teleseismic, strong-motion, 1-Hz GPS waveforms and static GPS displacement measurements. We performed data sensitivity analyses using four different rupture scenarios. Overall, when geodetic and seismic datasets are modeled jointly, slip distribution is well-constrained and rupture velocity can be obtained. The 2011 Van earthquake is a case where none of the available datasets are sufficient to constrain the slip distribution and the rupture kinematics on their own. This study confirms that rather than fitting one dataset perfectly, using multiple datasets jointly leads to a better-constrained slip distribution. The kinematic model obtained from the joint inversion of all the available data shows a 45-km-long bilateral rupture with two sub-events; one larger slip patch propagating up-dip and toward west of the hypocenter and a smaller second slip patch toward the east. The highest slip is to the west of the hypocenter with a peak value of 4.5 m. The slip is confined to the depths of 7.5 to 20 km and the shallower part of the fault remains unbroken. The average rupture velocity is around 3 km/s, close the Rayleigh wave velocity. The rupture is faster with shorter rise times for the larger sub-event toward the west, while the rise times are longer for the smaller sub-event to the east. This difference in seismic behavior might be related to the segmentation of the fault.


2011 Van earthquake Earthquake source Earthquake physics Finite-fault modeling 



This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) grant no: 112Y338. I would like to especially thank Prof. Semih Ergintav for the processing of the cGPS data. This manuscript has benefited greatly from the valuable comments of Dr. P. Martin Mai and one anonymous reviewer. I would like to thank Prof. Hayrullah Karabulut, Prof. Mustafa Aktar, and Dr. Yeliz Utku Konca for proofreading the manuscript.

Supplementary material

10950_2015_9506_MOESM1_ESM.doc (238 kb)
ESM 1 (DOC 238 kb)
10950_2015_9506_MOESM2_ESM.doc (456 kb)
ESM 2 (DOC 456 kb)
10950_2015_9506_MOESM3_ESM.doc (260 kb)
ESM 3 (DOC 260 kb)
10950_2015_9506_MOESM4_ESM.doc (414 kb)
ESM 4 (DOC 414 kb)
10950_2015_9506_MOESM5_ESM.doc (83 kb)
ESM 5 (DOC 83 kb)
10950_2015_9506_MOESM6_ESM.doc (31 kb)
ESM 6 (DOC 31 kb)


  1. Altiner Y, Sohne W, Guney C, Perlt J, Wang R, Muzli M (2013) A geodetic study of the 23 October 2011 Van, turkey earthquake. Tectonophys 588:118–134CrossRefGoogle Scholar
  2. Arpat E, Saroglu F (1972) The East Anatolian fault system: troughs on its development. Miner Res Explor Inst Turkey Bull 78:33–39Google Scholar
  3. Avouac JP, Ayoub F, Leprince S, Konca O, Helmberger DV (2006) The 2005, Mw 7.6 Kashmir earthquake: sub-pixel correlation of ASTER images and seismic waveforms analysis. Earth Planet Sci Lett 249(3-4):514–528CrossRefGoogle Scholar
  4. Barka A (1992) The North Anatolian fault zone. Ann Tectonicae 6:164–195Google Scholar
  5. Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. Eos Trans 81(48):S12A–03 (Fall Meet. Suppl.)Google Scholar
  6. Choi K, Bilich A, Larson K, Axelrad P 2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geoph Res Lett 31(L22608) doi: 10.1029/2004GL021621
  7. Delouis B, Giardini D, Lundgren P, Salichon J (2002) Joint inversion of InSAR, GPS, teleseismic, and strong-motion data for the spatial and temporal distribution of earthquake slip: application to the 1999 izmit mainshock. Bull Seismol Soc Am 92(1):278–299CrossRefGoogle Scholar
  8. Delouis B, J-M N, Vallee M (2010) Slip distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geoph Res Lett., 37(17), doi:  10.1029/2010GL043899
  9. Dewey J, Hempton MR, Kidd WSF, Saroglu F, Sengor AMC (1986) Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone. Geol Soc Lond Spec Publ 19(1):1–36CrossRefGoogle Scholar
  10. Dogan U, Demir DO, Cakir Z, Ergintav S, Ozener H, Akoglu AM, Nalbant SS, Reilinger R (2014. Postseismic deformation following the Mw 7.2, 23 October 2011 Van earthquake (Turkey): evidence for a seismic fault reactivation, Geoph Res Lett. 41, doi: 10.1002/2014GL059291
  11. Dziewonski AM, Chou T-A, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res B86:2825–2852CrossRefGoogle Scholar
  12. Ekstrom G, Nettles M, Dziewonski AM (2012) The global CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes.Phys Earth Planet Inter 200-201, doi: 10.1016/j.pepi.2012.1004.1002
  13. Elliott JR, Copley AC, Holley R, Scharer K, Parsons B (2013) The 2011 Mw 7.1 Van (Eastern Turkey) earthquake. J Geophys ResGoogle Scholar
  14. Emre O, Duman T, Ozalp S, Elmaci H (2011) Van depremi saha gözlemleri ve kaynak faya ilişkin Ön değerlendirmeler. Van earthquake Report, MTAGoogle Scholar
  15. Evangelidis CP, Kao H (2013) High-frequency source imaging of the 2011 October 23 Van (Eastern Turkey) earthquake by backprojection of strong motion waveforms. Geophys Jour Int. doi: 10.1093/gji/ggt1437 Google Scholar
  16. Fielding EJ, Lundgren PR, Taymaz T, Yolsal-Cevikbilen S, Owen SE (2013) Fault-slip source models for the 2011 M 7.1 Van earthquake in turkey from SAR interferometry, pixel offset tracking, GPS, and seismic waveform analysis. Seismol Res Lett 84(4):579–593CrossRefGoogle Scholar
  17. Gallovic F, Ameri G, Zahradnik J, Jansky J, Plicka V, Sokos E, Askan A, Pakzad M (2013) Fault process and broadband ground-motion simulations of the 23 October 2011 Van (eastern turkey) earthquake. B Seismol Soc Am 103(6):3164–3178CrossRefGoogle Scholar
  18. Hayes GP (2011) Finite Fault Model Updated Result of the Oct 23, 2011 Mw 7.1 Eastern Turkey Earthquake, in, edited.
  19. Herring T (1998). Documentation for GLOBK: Global Kalman filter for VLBI and GPS analysis program, version 4.1. Mass Inst Technol, CambridgeGoogle Scholar
  20. Ji C, Wald D, Helmberger DV (2002) Source description of the 1999 Hector Mine, California earthquake, part I: wavelet domain inversion theory and resolution analysis. Bull Seismol Soc Am 92(4):1192–1207CrossRefGoogle Scholar
  21. Ji C, Helmberger D, Wald DM, Ma KF (2003). Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research-Solid Earth, 108(B9), Art. No. 2412Google Scholar
  22. Ji C, Larson K, Hudnut K, Choi K (2004) Slip history of the 2003 San Simeon earthquake constrained by combining 1--Hz GPS, strong motion, and teleseismic data. Geophys Res Let 31, L17608CrossRefGoogle Scholar
  23. Konca AO, Hjorleifsdottir V, Song TRA, Avouac JP, Helmberger DV, Ji C, Sieh K, Briggs R, Meltzner A (2007) Rupture kinematics of the 2005 M-w 8.6 Nias-Simeulue earthquake from the joint inversion of seismic and geodetic data. Bull Soc Am 97(1):S307–S322CrossRefGoogle Scholar
  24. Konca AO, Avouac JP, Sladen A, Meltzner AJ, Sieh K, Fang P, Li Z, Galetzka J, Genrich J, Chlieh M, Natawidjaja DH, Bock Y, Fielding EJ, Ji C, Helmberger D (2008) Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence. Nature 456:631–635CrossRefGoogle Scholar
  25. Konca AO, Kaneko Y, Lapusta N,Avouac JP (2013). Kinematic inversion of physically plausible earthquake source models obtained from dynamic rupture simulations. Bull Seismol Soc Am 103(5)Google Scholar
  26. Larson K, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali Fault earthquake. Science 300, doi:  10.1126/science.1084531
  27. Moro M, Canelli V, Chini M, Bignami C, Melini D, Stramondo S, Saroli M, Picchiani M, Kriakopoulos C, Brunori CA (2014) The October 23, 2011, Van (Turkey) earthquake and its relationship with neighbouring structures, Sci. Rep., 4, doi:  10.1038/srep03959
  28. Orgulu G, Aktar M, Turkelli N, Sandvol E, Barazangi M (2003) Contribution to the seismotectonics of Eastern Turkey from moderate and small size events. Geophys Res Lett 30(24), doi: 10.1029/2003GL018258
  29. Page MT, Custodio S, Archuleta RJ, Carlson JM (2009) Constraining Earthquake Source Inversions with GPS DATA 1: resolution based removal of artifacts. J Geophys Res 114(B01314). doi: 10.1029/2007JB10005449
  30. Razafindrakoto HBT, Mai PM (2014) Uncertainty in earthquake source imaging due to variations in source time function and earth structure. Bull Seismol Soc Am 104(2), doi:  10.1785/0120130195
  31. Reilinger R, Mcclusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, Arrajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(B05411), doi: 10.1029/2005JB004051
  32. Saroglu F, Emre O, Kuscu I (1992) Active fault map of Turkey. General Directorate of Mineral Research and Exploration, AnkaraGoogle Scholar
  33. Sengor AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Techonophysics 75:181–241CrossRefGoogle Scholar
  34. Sengor AMC, Gorur N, Saroglu F (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in The Society of Economic Paleontologists and Mineralogists, editedGoogle Scholar
  35. Simons M, Fialko Y, Rivera L (2002) Coseismic deformation from the 1999 M-w 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bull Seismolo Soc Am 92(4):1390–1402CrossRefGoogle Scholar
  36. Utkucu (2013) 23 October 2011 Van, Eastern Anatolia, earthquake (MW 7.1) and seismotectonics of Lake Van area, J Seismol, 17, 783-805Google Scholar
  37. Wang GQ, Boore D, Tang G, Zhou X (2007) Comparisons of ground motions from colocated and closely spaced One-sample-per-second global positioning system and accelerograph recordings of the 2003 M 6.5 San Simeon, California, earthquake in the parkfield region. Bul Seismol Soc Am 97:76–90CrossRefGoogle Scholar
  38. Wang R, Parolai S, Ge M, Jin M, Walter TR, Zschau J (2013) The 2011 Mw 9.0 Tohoku earthquake: comparison of GPS and strong-motion data. Bull SeismSoc Am 103(2B);1336-1347Google Scholar
  39. Yin H, Wdowindski S, Liu X, Gan WJ, Huang B, Xiao G, Liang S (2013 Strong ground motion recorded by high-rate GPS of the 2008 Ms 8.0 Wenchuan earthquake, China, Seis Res LettGoogle Scholar
  40. Zahradnik J, Sokos E (2014) TheMw 7.1 Van, Eastern Turkey, earthquake 2011: two-point source modelling by iterative deconvolution and non-negative least squares. Geophys J Int 196:522–538CrossRefGoogle Scholar
  41. Zhu L, Rivera LA (2001) Computation of dynamic and static displacement from a point source in multi-layered media. Geophys J Int 148(3):1634–1641Google Scholar
  42. Zor E, Sandvol E, Gurbuz C, Turkelli N, Seber D, Barazangi M (2003) The crustal structure of the East Anatolian plateau (Turkey) from receiver functions. Geophys Res Lett 30(24) doi: 10.1029/2003GL018192

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of GeophysicsBogazici University, Kandilli Observatory and Earthquake Research InstituteIstanbulTurkey

Personalised recommendations