Journal of Seismology

, Volume 17, Issue 2, pp 771–782 | Cite as

S-wave envelope broadening characteristics of microearthquakes in the Canary Islands

Original Article


This study analyzes the S-wave envelope broadening characteristics of 290 earthquakes recorded by 14 stations of the Spanish National Seismograph Network in the Canary Islands region. The S-wave peak delay time (t p ) and envelope duration (t q ) parameters are evaluated phenomenologically to infer the strength of velocity inhomogeneities of the medium along each seismic ray path. Crustal (0 ≤ h ≤ 18 km) and upper mantle (18 < h ≤ 80 km) events are analyzed separately. Results in the frequency range 1 to 12 Hz for hypocentral distances from 30 to 600 km show that both t p and t q increase according to a power of hypocentral distance and they are independent of frequency. The spatial distribution of the peak delay time reveals weak strength of heterogeneity in most of the region at shallow depths. Relatively strong inhomogeneous zones are generated under the island of Tenerife and Gran Canaria at depths of 11–22 km.


Coda waves Scattering Envelope broadening Canary Islands 



We are very grateful to Carmen López and the people of the Instituto Geográfico Nacional, Spain for their support during the data selection process. Funds provided by REPSOL are supporting A. Ugalde. Two anonymous reviewers made constructive comments that helped to improve the paper.


  1. Aki K (1969) Analysis of the seismic coda of local earthquakes as scattered waves. J Geophys Res 74:615–631CrossRefGoogle Scholar
  2. Anguita F, Hernán F (1975) A propagating fracture model versus a hot-spot origin for the Canary Islands. Earth Planet Sci Lett 27:11–19CrossRefGoogle Scholar
  3. Anguita F, Hernán F (2000) The Canary Islands origin: a unifying model. J Volcanol Geotherm Res 103:1–26CrossRefGoogle Scholar
  4. Araña V, Ortiz R (1986) Marco geodinámico del volcanismo canario. An Física Vol Esp 82:202–231Google Scholar
  5. Bosshard E, MacFarlane DJ (1970) Crustal structure of the western Canary Islands from seismic refraction and gravity data. J Geophys Res 75:4901–4918CrossRefGoogle Scholar
  6. Burke K, Wilson JT (1972) Is the African plate stationary? Nature 239:387–390CrossRefGoogle Scholar
  7. Canales JP, Dañobeitia JJ (1998) The Canary Islands swell: a coherence analysis of bathymetry and gravity. Geophys J Int 132:479–488CrossRefGoogle Scholar
  8. Canas JA, Pujades LG, Blanco MJ, Soler V, Carracedo JC (1995) Coda Q distribution in the Canary Islands. Tectonophysics 246:245–261CrossRefGoogle Scholar
  9. Canas JA, Ugalde A, Pujades LG, Carracedo JC, Soler V, Blanco MJ (1998) Intrinsic and scattering seismic wave attenuation in the Canary Islands. J Geophys Res 103:15037–15050CrossRefGoogle Scholar
  10. Carbó A, Muñoz-Martín A, Llanes P, Álvarez J, EEZ Working Group (2003) Gravity analysis offshore the Canary Islands from a systematic survey. Mar Geophys Res 24:113–127CrossRefGoogle Scholar
  11. Dañobeitia JJ, Canales JP, Dehghani GA (1994) An estimation of the elastic thickness of the lithosphere in the Canary Archipelago under admittance function. Geophys Res Lett 21:2649–2652CrossRefGoogle Scholar
  12. Dziewonski AM, Ekström G, Woodhouse JH, Zwart G (1990) Centroid-moment tensor solutions for April–June 1989. Phys Earth Planet In 60:243–253CrossRefGoogle Scholar
  13. Fehler M, Sato H, Huang LJ (2000) Envelope broadening of outgoing waves in 2D random media: a comparison between the Markov approximation and numerical simulations. Bull Seism Soc Am 90:914–928CrossRefGoogle Scholar
  14. Fúster JM (1975) Las Islas Canarias: un ejemplo de evolución temporal y espacial del volcanismo oceánico. Est Geol 31:439–463Google Scholar
  15. Gusev A, Abubakirov IR (1999a) Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses-I. General approach and the inversion procedure. Geophys J Int 136:295–308CrossRefGoogle Scholar
  16. Gusev A, Abubakirov IR (1999b) Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses-II. Application to Kamchatka data. Geophys J Int 136:309–323CrossRefGoogle Scholar
  17. Hoernle K, Schmincke HU (1993) The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canary hotspot. J Petrol 34:599–626CrossRefGoogle Scholar
  18. Hoshiba M, Sato H, Fehler M (1991) Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope: a Monte-Carlo simulation of multiple isotropic scattering. Pap Meteorol Geophys 42:65–91CrossRefGoogle Scholar
  19. Mézcua J, Buforn E, Udías A, Rueda J (1992) Seismotectonics of the Canary Islands. Tectonophysics 208:447–452CrossRefGoogle Scholar
  20. Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43CrossRefGoogle Scholar
  21. Nishigami K (1991) A new inversion method of coda waveforms to determine spatial distribution of coda scatterers in the crust and uppermost mantle. Geophys Res Lett 18:2225–2228CrossRefGoogle Scholar
  22. Obara K, Sato H (1995) Regional differences of random inhomogeneities around the volcanic front in the Kanto-Tokai area, Japan, revealed from the broadening of S wave seismogram envelopes. J Geophys Res 100:2103–2121CrossRefGoogle Scholar
  23. Petukhin AG, Gusev AA (2003) The duration–distance relationship and average envelope shapes of small Kamchatka earthquakes. Pure Appl Geophys 160:1717–1743Google Scholar
  24. Ranero CR, Torné M, Banda E (1995) Gravity and multichannel seismic reflection constraints on the lithospheric structure of the Canary swell. Mar Geophys Res 17:519–534CrossRefGoogle Scholar
  25. Roest WR, Dañobeitia JJ, Verhoef J, Collete BJ (1992) Magnetic anomalies in the Canary Basin and the Mesozoic evolution of the Central North Atlantic. Mar Geophys Res 14:1–24CrossRefGoogle Scholar
  26. Saito T, Sato H, Ohtake M (2002) Envelope broadening of spherically outgoing waves in three-dimensional random media having power law spectra. J Geophys Res 107. doi: 10.1029/2001JB000264
  27. Saito T, Sato H, Ohtake M, Obara K (2005) Unified explanation of envelope broadening and maximum-amplitude decay of high-frequency seismograms based on the envelope simulation using the Markov approximation: forearc side of the volcanic front in northeastern Honshu, Japan. J Geophys Res 110:B01304. doi: 10.1029/2004JB003225 CrossRefGoogle Scholar
  28. Sato H (1989) Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: southeastern Honshu, Japan. J Geophys Res 94:17735–17747CrossRefGoogle Scholar
  29. Sato H, Fehler MC (1998) Seismic wave propagation and scattering in the heterogeneous earth. AIP Series in Modern Acoustics and Signal Processing. Springer, New YorkCrossRefGoogle Scholar
  30. Socías I, Mézcua J (1996) Levantamiento aeromagnético del archipiélago canario, vol 35. Instituto Geográfico Nacional, Madrid, pp 1–28Google Scholar
  31. Takahashi T, Sato H, Nishimura T, Obara K (2007) Strong inhomogeneity beneath Quaternary volcanoes revealed from the peak delay analysis of S-wave seismograms of microearthquakes in northeastern Japan. Geophys J Int 168:90–99. doi: 10.1111/j.1365-246X.2006.03197.x CrossRefGoogle Scholar
  32. Tripathi JN, Sato H, Yamamoto M (2010) Envelope broadening characteristics of crustal earthquakes in northeastern Honshu, Japan. Geophys J Int 182:988–1000. doi: 10.1111/j.1365-246X.2010.04657.x CrossRefGoogle Scholar
  33. Ugalde A, Carcolé E, Tripathi JN (2006) Spatial distribution of scatterers in the crust by inversion analysis of coda envelopes: a case study of Gauribidanur seismic array (southern India). Geophys J Int 166:782–794CrossRefGoogle Scholar
  34. Ugalde A, Tripathi JN, Hoshiba M, Rastogi BK (2007) Intrinsic and scattering attenuation in western India from aftershocks of the 26 January, 2001 Kachchh earthquake. Tectonophysics 429:111–123CrossRefGoogle Scholar
  35. Verhoef J, Collette BJ, Dañobeitia JJ, Roeser HA, Roest WR (1991) Magnetic anomalies off West-Africa (20–38°N). Mar Geophys Res 13:81–103Google Scholar
  36. Wu RS (1985) Multiple scattering and energy transfer of seismic waves: separation of scattering effect from intrinsic attenuation, I, Theoretical modeling. Geophys J R Astron Soc 82:57–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of Earth Sciences “Jaume Almera”–CSICBarcelonaSpain

Personalised recommendations