Advertisement

Journal of Seismology

, Volume 16, Issue 4, pp 767–776 | Cite as

Horizontal rotation signals detected by “G-Pisa” ring laser for the M w = 9.0, March 2011, Japan earthquake

  • Jacopo Belfi
  • Nicolò Beverini
  • Giorgio Carelli
  • Angela Di Virgilio
  • Enrico Maccioni
  • Gilberto Saccorotti
  • Fabio Stefani
  • Alexander Velikoseltsev
Original Article

Abstract

We report the observation of the ground rotation induced by the M w = 9.0, 11th of March 2011, Japan earthquake. The rotation measurements have been conducted with a ring laser gyroscope operating in a vertical plane, thus detecting rotations around the horizontal axis. Comparison of ground rotations with vertical accelerations from a co-located force balance accelerometer shows excellent ring laser coupling at periods longer than 100 s. Under the plane wave assumption, we derive a theoretical relationship between horizontal rotation and vertical acceleration for Rayleigh waves. Due to the oblique mounting of the gyroscope with respect to the wave direction of arrival, apparent velocities derived from the acceleration/rotation rate ratio are expected to be always larger than or equal to the true wave propagation velocity. This hypothesis is confirmed through comparison with fundamental mode, Rayleigh-wave phase velocities predicted for a standard Earth model.

Keywords

Laser gyroscopes Rotational seismology Seismic instrumentation 

Notes

Acknowledgements

We acknowledge F. Bosi, A. Gebauer, R. Hurst, and U. Schreiber for the useful discussions. A. Velikoseltsev acknowledges the partial support from the Federal Targeted Program Scientific and scientific pedagogical personnel of the innovative Russia in 2009–2013 of the Ministry of Education and Science of the Russian Federation.

References

  1. Belfi J, Beverini N, Bosi F, Carelli G, Di Virgilio A, Kolker D, Maccioni E, Ortolan A, Passaquieti R, Stefani F (2012) Performance of “G-Pisa” ring laser gyro at the Virgo site. J Seismol. doi: 10.1007/s10950-012-9277-8 Google Scholar
  2. Cochard A, Igel H, Schuberth B, Suryanto W, Velikoseltsev A, Schreiber U, Wassermann J, Scherbaum F, Vollmer D (2006) Rotational motions in seismology: theory, observation, simulation. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Berlin, pp 7, 62, 72Google Scholar
  3. Igel H, Schreiber KU, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2005) Rotational motions induced by the M8. 1 Tokachi-oki earthquake, September 25, 2003. Geophys Res Lett 32(8):L08309Google Scholar
  4. Igel H, Cochard A, Wassermann J, Asher Flaws F, Schreiber U, Velikoseltsev A Pham Dinh N (2007) Broad-band observations of earthquake-induced rotational ground motions. Geophys J Int 168:182–196CrossRefGoogle Scholar
  5. Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122:108–124CrossRefGoogle Scholar
  6. Kurrle D, Igel H, Ferreira AMG, Wassermann J, Schreiber U (2010) Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophys Res Lett 37:L04307CrossRefGoogle Scholar
  7. Lay T and Wallace TC (1995) Modern global seismology. Academic, San DiegoGoogle Scholar
  8. Li H, Sun L, Wang S (2001) Improved approach for obtaining rotational components of seismic motion. Transactions, SMiRT16, Washington, DCGoogle Scholar
  9. McLeod DP, Stedman GE, Webb TH, Schreiber KU (1998) Comparison of standard and ring laser rotational seismograms. BSSA 88(6):1495–1503Google Scholar
  10. Pancha A, Webb TH, Stedman GE, McLeod DP, Schreiber KU (2000) Ring laser detection of rotations from teleseismic waves. Geophys Res Lett 27:3553–3556CrossRefGoogle Scholar
  11. Rautenberg V, Plag HP, Burns M, Stedman GE, Juttner HU (1997) Tidally induced Sagnac signal in a ring laser. Geophys Res Lett 24(8):893–896CrossRefGoogle Scholar
  12. Schreiber KU, Klugel T, Stedman GE (2003) Earth tide and tilt detection by a ring laser gyroscope. J Geophys Res 108:2132CrossRefGoogle Scholar
  13. Schreiber KU, Stedman GE, Igel H, Flaws A (2006) Ring laser gyroscopes as rotation sensors for seismic wave studies. In: Teisseyre R et al (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Berlin, pp 377–390CrossRefGoogle Scholar
  14. Stedman GE (1997) Ring-laser tests of fundamental physics and geophysics. Rep Prog Phys 60–6:615Google Scholar
  15. Stedman GE, Li Z, Bilger HR (1995) Sideband analysis and seismic detection in large ring laser. Appl Opt 34:7390–7396CrossRefGoogle Scholar
  16. Takeo M (2009) Rotational motions observed during an earthquake swarm in April 1998 offshore Ito, Japan. Bull Seism Soc Am 99(2B):1028CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jacopo Belfi
    • 1
  • Nicolò Beverini
    • 1
  • Giorgio Carelli
    • 1
  • Angela Di Virgilio
    • 2
  • Enrico Maccioni
    • 1
  • Gilberto Saccorotti
    • 3
    • 4
  • Fabio Stefani
    • 1
  • Alexander Velikoseltsev
    • 5
  1. 1.Department of Physics “Enrico Fermi”Università di Pisa and CNISM unità di PisaPisaItaly
  2. 2.INFN Sez. di PisaPisaItaly
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaPisaItaly
  4. 4.Fondazione Prato RicerchePratoItaly
  5. 5.Department of Laser Measurement and Navigation SystemsSt.-Petersburg Electrotechnical UniversitySt.-PetersburgRussia

Personalised recommendations