Journal of Seismology

, 13:449 | Cite as

Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties

  • Stefan Wiemer
  • Domenico Giardini
  • Donat Fäh
  • Nicholas Deichmann
  • Souad Sellami
Original article


We present the results of a new genera tion of probabilistic seismic hazard assessment for Switzerland. This study replaces the previous intensity-based generation of national hazard maps of 1978. Based on a revised moment-magnitude earthquake catalog for Switzerland and the surrounding regions, covering the period 1300–2003, sets of recurrence parameters (a and b values, M max ) are estimated. Information on active faulting in Switzerland is too sparse to be used as source model. We develop instead two models of areal sources. The first oriented towards capturing historical and instrumental seismicity, the second guided largely by tectonic principles and express ing the alterative view that seismicity is less stationary and thus future activity may occur in previously quiet regions. To estimate three alterna tive a and b value sets and their relative weighting, we introduce a novel approach based on the modified Akaike information criterion, which allows us to decide when the data in a zone deserves to be fitted with a zone-specific b value. From these input parameters, we simulate synthetic earthquake catalogs of one-million-year duration down to magnitude 4.0, which also reflect the difference in depth distribution between the Alpine Foreland and the Alps. Using a specific predictive spectral ground motion model for Switzerland, we estimate expected ground motions in units of the 5% damped acceleration response spectrum at frequencies of 0.5–10 Hz for all of Switzerland, referenced to rock sites with an estimated shear wave velocity of 1,500 m/s2 in the upper 30 m. The highest hazard is found in the Wallis, in the Basel region, in Graubünden and along the Alpine front, with maximum spectral accelerations at 5 Hz frequency reaching 150 cm/s2 for a return period of 475 years and 720 cm/s2 for 10,000 years.


Seismic hazard Seismicity rates PSHA Seismotectonics Switzerland 

Supplementary material

10950_2008_9138_MOESM1_ESM.pdf (701 kb)
(PDF 701 kb)


  1. Abrahamson NA, Bommer JJ (2005) Probability and uncertainty in seismic hazard analysis. Earthq Spectra 21(2):603–607. doi:10.1193/1.1899158 CrossRefGoogle Scholar
  2. Abrahamson NA, Birkhauser P, Koller M, Mayer-Rosa D, Smit PM, Sprecher C et al (2002) PEGASOS—a comprehensive probabilistic seismic hazard assessment for nuclear power plants in Switzerland. In: Proceedings of the 12 ECEE, London, paper no. 633Google Scholar
  3. Akaike H (1974) New look at statistical-model identification. IEEE Trans Automat Contr AC19(6):716–723. doi:10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  4. Aki K (1965) Maximum likelihood estimate of b in the formula log N = a – b M and its confidence limits. Bull Earthq Res Inst 43:237–239Google Scholar
  5. Ambraseys N (2003) Reappraisal of magnitude of 20th century earthquakes in Switzerland. J Earthq Eng 7:149–191. doi:10.1142/S1363246903001073 CrossRefGoogle Scholar
  6. Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25:371–400. doi:10.1002/(SICI)1096-9845(199604)25:4<371::AID-EQE550>3.0.CO;2-A CrossRefGoogle Scholar
  7. Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3:1–53. doi:10.1007/s10518-005-0-0183-0 CrossRefGoogle Scholar
  8. Atkinson GM, Beresnev I (1997) Don’t call it stress drop. Seismol Res Lett 68:3–4Google Scholar
  9. Bakun WH, Wentworth CM (1999) Estimating earthquake location and magnitude from seismic intensity data (vol 87, p 1502, 1997). Bull Seismol Soc Am 89(2):557–557Google Scholar
  10. Bay F (2002) Ground-motion scaling in Switzerland: implications for hazard assessment. PhD thesis no. 14567, Swiss Federal Institute of Technology, ZurichGoogle Scholar
  11. Bay F, Fäh D, Malagnini D, Giardini D (2003) Spectral shear wave ground-motion scaling in Switzerland. Bull Seismol Soc Am 93:414–429. doi:10.1785/0120010232 CrossRefGoogle Scholar
  12. Bay F, Wiemer S, Fäh D, Giardini D (2005) Predictive ground-motions relationships for Switzerland: best estimates and uncertainties. J Seismol 9:223–240. doi:10.1007/s10950-005-5129-0 CrossRefGoogle Scholar
  13. Beauval C, Hainzl S, Scherbaum F (2006) The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation. Bull Seismol Soc Am 96:2465–2471. doi:10.1785/0120060073 CrossRefGoogle Scholar
  14. Becker A, Davenport CA (2003) Rockfalls triggered by the a.d. 1356 Basle earthquake. Terra Nova 15(4):258–264. doi:10.1046/j.1365-3121.2003.00496.x CrossRefGoogle Scholar
  15. Becker A, Davenport CA, Giardini D (2002) Palaeoseismicity studies on end-Pleistocene and Holocene lake deposits around Basle, Switzerland. Geophys J Int 149(3):659–678. doi:10.1046/j.1365-246X.2002.01678.x CrossRefGoogle Scholar
  16. Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831–851Google Scholar
  17. Bender B, Perkins DM (1987) SEISRISK III: a computer program for seismic hazard estimation. US Geol Surv Bull 1772:20Google Scholar
  18. Bommer JJ, Abrahamson NA (2006) Why do modem probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bull Seismol Soc Am 96:1967–1977. doi:10.1785/0120060043 CrossRefGoogle Scholar
  19. Bommer JJ, Abrahamson NA, Strasser FO et al (2004) The challenge of defining upper bounds on earthquake ground motions. Seismol Res Lett 75(1):82–95CrossRefGoogle Scholar
  20. Bommer JJ, Scherbaum F, Bungum H et al (2005) On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull Seismol Soc Am 95(2):377–389. doi:10.1785/0120040073 CrossRefGoogle Scholar
  21. Bommer JJ, Stafford PJ, Alarcón JE, Akkar S (2007) The influence of magnitude range on empirical ground-motion prediction. Bull Seismol Soc Am 97(6):2152–2170. doi:10.1785/0120070081 CrossRefGoogle Scholar
  22. Boore DM (1983) Stochastic simulation of high-frequency ground-motion based on seismological models of the radiated spectra. Bull Seismol Soc Am 73:1865–1894Google Scholar
  23. Boore DM (2001) Fortran programs for simulating ground-motions from earthquakes: version 2.0—a revision of Open-File Report 96-80-A. Open-File Report 00-509, US Geological SurveyGoogle Scholar
  24. Boore DM (2003) Prediction of ground-motion using the stochastic method. Pure Appl Geophys 160:635–676. doi:10.1007/PL00012553 CrossRefGoogle Scholar
  25. Boore DM et al (1997) Equations for estimating horizontal response spectra and peak acceleration from western North America earthquakes: a summary of recent work. Seism Res Lett 68:128–153Google Scholar
  26. Braunmiller J, Deichmann N, Giardini D, Wiemer S (2005) Homogeneous moment magnitude calibration in Switzerland. Bull Seismol Soc Am 95(1):58–74CrossRefGoogle Scholar
  27. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009. doi:10.1029/JB075i026p04997 CrossRefGoogle Scholar
  28. Budnitz RJ, Apostolakis A, Boore DM et al (1997) Recommendations for PSHA: guidance on uncertainty and use of experts (No. NUREG/CR-6372-V1)Google Scholar
  29. Burg JP, Van Den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: mode and structural consequences. Géol Fr 3:33–51Google Scholar
  30. Burkhard M (1990) Aspects of the large-scale Miocene deformation in the most external part of the Swiss Alps (Subalpine Molasse to Jura fold belt). Eclogae Geol Helv 83(3):559–583Google Scholar
  31. Choy GL, Boatwright J (1995) Global patterns of radiated seismic energy and apparent stress. J Geophys Res 100:18205–18226. doi:10.1029/95JB01969 CrossRefGoogle Scholar
  32. Coppersmith KJ (1994) Conclusions regarding maximum earthquake assessment. The earthquakes of stable continental regions, 1: assessment of large earthquake potential. Electric Power Research Institute, Report TR-102261-V1, 1: a, 6-1-6-24Google Scholar
  33. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606Google Scholar
  34. Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to Central Europe and rock sites. J Seismol 10(2):137–156. doi:10.1007/s10950-005-9006-7 CrossRefGoogle Scholar
  35. Deichmann N (1992) Structural and rheological implications of lower-crustal earthquakes below northern Switzerland. Phys Earth Planet Inter 69:270–280. doi:10.1016/0031-9201(92)90146-M CrossRefGoogle Scholar
  36. Deichmann N, Baer M, Braunmiller J et al (2000) Earthquakes in Switzerland and surrounding regions during 1999. Grunthal 93:23–45Google Scholar
  37. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478. doi:10.1111/j.1365-246X.1990.tb06579.x CrossRefGoogle Scholar
  38. Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci Rev 61(1–2):43–104. doi:10.1016/S0012-8252(02)00112-5 CrossRefGoogle Scholar
  39. Eckardt P, Funk HP, Labhart T (1983) Postglaziale Krustenbewegungen an der Rhein-Rhone-Linie, Vermessung, Photogrammetrie. Kult Tech 2:43–56Google Scholar
  40. Fäh D, Koch K (2002) Discrimination between earthquakes and, chemical explosions by multivariate statistical analysis: a case study for Switzerland. Bull Seismol Soc Am 92(5):1795–1805. doi:10.1785/0120010166 CrossRefGoogle Scholar
  41. Fäh D, Giardini D, Bay F et al (2003) Earthquake Catalogue Of Switzerland (ECOS) and the related macroseismic database. Eclogae Geol Helv 96(2):219–236Google Scholar
  42. Field EH, Gupta N, Gupta V et al (2005) Hazard calculations for the WGCEP-2002 earthquake forecast using OpenSHA and distributed object technologies. Seismol Res Lett 76(2):161–167CrossRefGoogle Scholar
  43. Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8–21Google Scholar
  44. Frankel A, Harmsen S, Mueller C et al (1997a) U. S. G. S. national seismic hazard maps: uniform hazard spectra, de-aggregation, and uncertainty. In: Proceedings, FEMA/NCEER workshop on the national representation of seismic ground motion for new and existing bridgesGoogle Scholar
  45. Frankel A, Mueller C, Barnhard T et al (1997b) Seismic hazard maps for California, Nevada and western Arizona/Utah. United States Geological Survey Open-File Report, pp 97–130Google Scholar
  46. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64:1363–1367Google Scholar
  47. Giardini D (1999) The global seismic hazard assessment program (GSHAP)—1992/1999. Ann Geofis 42:957–974Google Scholar
  48. Giardini D, Grünthal G, Shedlock KM, Zhang PZ (1999) The GSHAP global seismic hazard map. Ann Geofis 42(6):1225–1230Google Scholar
  49. Grünthal G (1999) Seismic hazard assessment for Central, North and Northwest Europe: GSHAP region 3. Ann Geofis 42(6):999–1011Google Scholar
  50. Grünthal G, Mayer-Rosa D, Lenhardt WA (1998) Abschätzung der Erdbebengefährdung für die D-A-CH-Staaten—Deutschland, Österreich, Schweiz. Bautechnik 10:753–767Google Scholar
  51. Gutenberg R, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  52. Hsü KJ (1995) The geology of Switzerland. Princeton University Press, Princeton, New Jersey, USAGoogle Scholar
  53. Husen S, Kissling E, Deichmann N, Wiemer S, Giardini D, Baer M (2003) Probabilistic earthquake location in complex three-dimensional velocity models: application to Switzerland. J Geophys Res 108(B2):ESE5.1–ESE5.20. doi:10.1029/2002JB001778 CrossRefGoogle Scholar
  54. Ide S, Beroza G (2001) Does apparent stress vary with earthquake size? Geophys Res Lett 28:3349–3352. doi:10.1029/2001GL013106 CrossRefGoogle Scholar
  55. Ide S, Beroza GC, Prejean SJ, Ellsworth WL (2003) Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. J Geophys Res 108(B5):2271. doi:10.1029/2001JB001617 CrossRefGoogle Scholar
  56. Imoto M (1991) Changes in the magnitude frequency b-value prior to large (M-greater-than-or-equal-to-6.0) earthquakes in Japan. Tectonophysics 193(4):311–325. doi:10.1016/0040-1951(91)90340-X CrossRefGoogle Scholar
  57. Jaboyedoff M, Pastorelli S (2003) Perturbation of the heat flow by water circulation in a mountainous framework: examples from the Swiss Alps. Eclogae Geol Helv 96:37–47Google Scholar
  58. Jiménez MJ, Giardini D, Grünthal G (2003) The ESC-SESAME unified hazard model for the European–Mediterranean region. EMSC/CSEM Newsletter 19:2–4Google Scholar
  59. Johnston AC, Coppersmith KJ, Kanter LR, Cornell CA (1994) The earthquakes of stable continental regions, vol. 1: assessment of large earthquake potential. Electric Power Research Institute (EPRI TR-102261-V1)Google Scholar
  60. Joyner WB, Boore BM (1981) Peak horizontal acceleration and velocity from strong motion records including records from the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am 71:2011–2083Google Scholar
  61. Kagan Y (1999) Universality of the seismic moment–frequency relation. Pure Appl Geophys 155:537–574. doi:10.1007/s000240050277 CrossRefGoogle Scholar
  62. Kagan Y, Jackson DD (2000) Probabilistic forecasting of earthquakes. Geophys J Int 143:438–453. doi:10.1046/j.1365-246X.2000.01267.x CrossRefGoogle Scholar
  63. Kastrup U (2002) Seismotectonics and stress field variations in Switzerland. PhD thesis no. 14527, ETH Zurich, 153 ppGoogle Scholar
  64. Kastrup U, Zoback ML, Deichmann N, Evans K, Michael AJ, Giardini D (2004) Stress field variations in the Swiss Alps and the northern Alpine Foreland derived from inversion of fault plane solutions. J Geophys Res 109:B01402. doi:10.1029/2003JB002550 CrossRefGoogle Scholar
  65. Kastrup U, Deichmann N, Frohlich A et al (2007) Evidence for an active fault below the northwestern Alpine foreland of Switzerland. Geophys J Int 169(3):1273–1288. doi:10.1111/j.1365-246X.2007.03413.x CrossRefGoogle Scholar
  66. Kenneth P, Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information—theoretic approach. Springer, New YorkGoogle Scholar
  67. Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis - Part I: estimation of maximum regional magnitude m(max). Pageoph 152(3):413–442CrossRefGoogle Scholar
  68. Kijko A, Graham G (1999) “Parametric-historic” procedure for probabilistic seismic hazard analysis—part II: assessment of seismic hazard at specified site. Pure Appl Geophys 154(1):1–22. doi:10.1007/s000240050218 CrossRefGoogle Scholar
  69. Kijko A, Lasocki S, Graham G (2001) Non-parametric seismic hazard in mines. Pure Appl Geophys 158(9–10):1655–1675. doi:10.1007/PL00001238 CrossRefGoogle Scholar
  70. Kissling E (1993) Deep-structure of the Alps—what do we really know. Phys Earth Planet Inter 79(1–2):87–112. doi:10.1016/0031-9201(93)90144-X CrossRefGoogle Scholar
  71. Klügel JU (2005) Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants. Eng Geol 78(3–4):285–307. doi:10.1016/j.enggeo.2005.01.007 CrossRefGoogle Scholar
  72. Klügel JU (2007) Error inflation in probabilistic seismic hazard analysis. Eng Geol 90(3–4):186–192. doi:10.1016/j.enggeo.2007.01.003 CrossRefGoogle Scholar
  73. Knopoff L (1964) Statistics of earthquakes in California. Bull Seismol Soc Am 54:1871–1873Google Scholar
  74. Koch K, Fäh D (2002) Identification of earthquakes and explosions using amplitude ratios: the Vogtland area revisited. Pure Appl Geophys 159(4):735–757. doi:10.1007/s00024-002-8657-3 CrossRefGoogle Scholar
  75. Lomax A, Zollo A, Capuano P, Virieux J (2001) Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophys J Int 146(2):313–331. doi:10.1046/j.0956-540x.2001.01444.x CrossRefGoogle Scholar
  76. Malagnini L, Herrmann RB (2000) Ground-motion scaling in the region of the 1997 Umbria-Marche earthquakes (Italy). Bull Seismol Soc Am 90:1041–1051. doi:10.1785/0119990150 CrossRefGoogle Scholar
  77. Malagnini L, Hermann L, Di Bona L (2000a) Ground-motion scaling in the Apennines (Italy). Bull Seismol Soc Am 90:1062–1081. doi:10.1785/0119990152 CrossRefGoogle Scholar
  78. Malagnini L, RB Herrmann RB, Koch K (2000b) Regional ground-motion scaling in central Europe. Bull Seismol Soc Am 90:1052–1061. doi:10.1785/0119990151 CrossRefGoogle Scholar
  79. Malagnini L, Mayeda K, Uhrhammer R, Akinci A, Herrmann RB (2007) A regional ground-motion excitation/attenuation model for the San Francisco region. Bull Seismol Soc Am 97:843–862. doi:10.1785/0120060101 CrossRefGoogle Scholar
  80. Mayeda K, Walter WR (1996) Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. J Geophys Res 101:11195–11208. doi:10.1029/96JB00112 CrossRefGoogle Scholar
  81. McGuire RK (1976) EQRISK: evaluation of sites for earthquake risk. US Geological Survey, Open File Report, pp 76–67Google Scholar
  82. Meghraoui M, Delouis B, Ferry M et al (2001) Active normal faulting in the upper Rhine Graben and paleoseismic identification of the 1356 Basel earthquake. Science 293(5537):2070–2073. doi:10.1126/science.1010618 CrossRefGoogle Scholar
  83. Morasca P, Malagnini L, Akinci A et al (2006) Ground-motion scaling in the Western Alps. J Seismol 10(3):315–333. doi:10.1007/s10950-006-9019-x CrossRefGoogle Scholar
  84. Musson RMW (2000) The use of Monte Carlo simulations for seismic hazard assessment in the UK. Ann Geofis 43:1–9Google Scholar
  85. Musson RMW, Toro GR, Coppersmith KJ et al (2005) Evaluating hazard results for Switzerland and how not to do it: a discussion of “problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants” by J-U Klügel. Eng Geol 82(1):43–55. doi:10.1016/j.enggeo.2005.09.003 CrossRefGoogle Scholar
  86. Ogata Y (1983) Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum-likelihood procedure. J Phys Earth 31(2):115–124Google Scholar
  87. Ogata Y (1999) Seismicity analysis through point-process modeling: a review. Pure Appl Geophys 155(2–4):471–507. doi:10.1007/s000240050275 CrossRefGoogle Scholar
  88. Pavoni N, Maurer HR, Roth P, Deichmann N (1997) Seismicity and seismotectonics of the Swiss Alps, deep structures of the Swiss Alps, results of NRP 20. Birkhäuser, Basel, Switzerland, pp 241–250Google Scholar
  89. Raoof M, Herrmann RB, Malagnini L (1999) Attenuation and excitation of three-component ground-motion in Southern California. Bull Seismol Soc Am 89:888–902Google Scholar
  90. Reasenberg PA (1985) Second-order moment of Central California seismicity. J Geophys Res 90:5479–5495. doi:10.1029/JB090iB07p05479 CrossRefGoogle Scholar
  91. Regenauer-Lieb K, Petit JP (1997) Cutting of the European continental lithosphere: plasticity theory applied to the present Alpine collision. J Geophys Res 102(B4):7731–7746. doi:10.1029/96JB03409 CrossRefGoogle Scholar
  92. Reiter L (1990) Probabilistic seismic hazard analyses—lessons learned—a regulators perspective. Nucl Eng Des 123(2–3):123–128. doi:10.1016/0029-5493(90)90232-M CrossRefGoogle Scholar
  93. Reiter L (1991) Earthquake hazard analysis. Columbia University Press, 254 ppGoogle Scholar
  94. Rüttener E (1995) Earthquake hazard evaluation for Switzerland, Matériaux pour la Géologie de la Suisse, Géophysique No 29 publié par la Commission Suisse de Géophysique. Schweizerischer Erdbebendienst, Zürich, p 106Google Scholar
  95. Rüttener E, Egozcue JJ, Mayerrosa D, Mueller S (1996) Bayesian estimation of seismic hazard for two sites in Switzerland. Nat Hazards 14(2–3):165–178. doi:10.1007/BF00128264 Google Scholar
  96. Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogs and the hypothesis of self-similarity. Nature 337:251–253. doi:10.1038/337251a0 CrossRefGoogle Scholar
  97. Rydelek PA, Sacks IS (2003) Comment on “Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan,” by Stefan Wiemer and Max Wyss. Bull Seismol Soc Am 93(4):1862–1867CrossRefGoogle Scholar
  98. Sabetta F, Pugliese A (1987) Attenuation of peak horizontal acceleration and velocity from Italian strong-motion records. Bull Seismol Soc Am 77:1491–1513Google Scholar
  99. Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86(2):337–352Google Scholar
  100. Sägesser R, Mayer-Rosa D (1978) Erdbebengefährdung in der Schweiz. Schweizerische Bauzeitung SIA 78:3–18Google Scholar
  101. Scherbaum F, Schmedes J, Cotton F (2004) On the conversion of source-to-site distance measures for extended earthquake source models. Bull Seismol Soc Am 94(3):1053–1069. doi:10.1785/0120030055 CrossRefGoogle Scholar
  102. Scherbaum F, Bommer JJ, Bungum H, Cotton F, Abrahamson NA (2005) Composite ground-motion models and logic trees: methodology, sensitivities, and uncertainties. Bull Seismol Soc Am 95(5):1575–1593. doi:10.1785/0120040229 CrossRefGoogle Scholar
  103. Scherbaum F, Cotton F, Staedtke H (2006) The estimation of minimum-misfit stochastic models from empirical ground-motion prediction equations. Bull Seismol Soc Am 96(2):427–445. doi:10.1785/0120050015 CrossRefGoogle Scholar
  104. Schmid S, Kissling E (2000) The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 19(1):62–68. doi:10.1029/1999TC900057 CrossRefGoogle Scholar
  105. Schmid SM, Froitzheim N, Pfiffner OA, Schonborn G, Kissling E (1997) Geophysical–geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 16(1):186–188. doi:10.1029/96TC03723 CrossRefGoogle Scholar
  106. Schnellmann M, Anselmetti FS, Giardini D, Mckenzie JA, Ward SN (2002) Prehistoric earthquake history revealed by lacustrine slump deposits. Geology 30(12):1131–1134. doi:10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2 CrossRefGoogle Scholar
  107. Schnellmann M, Anselmetti FS, Giardini D, Mckenzie JN, Ward SN (2004) Ancient earthquakes at Lake Lucerne. Am Sci 92(1):46–53Google Scholar
  108. Schorlemmer D, Wiemer S, Wyss M (2004a) Earthquake statistics at Parkfield: 1. Stationarity of b values. J Geophys Res Solid Earth 109(B12):B12307.1–B12307.17Google Scholar
  109. Schorlemmer D, Wiemer S, Wyss M, Jackson DD (2004b) Earthquake statistics at Parkfield: 2. Probabilistic forecasting and testing. J Geophys Res Solid Earth 109(B12):B12308.1–B12308.12Google Scholar
  110. Schwarz-Zanetti G, Deichmann N, Fäh D et al (2003) The earthquake in Unterwalden on September 18, 1601: a historico-critical macroseismic evaluation. Eclogae Geol Helv 96(3):441–450Google Scholar
  111. Shi Y, Bolt BA (1982) The standard error of the magnitude–frequency b value. Bull Seismol Soc Am 72:1677–1687Google Scholar
  112. SIA (2003) Norm SIA261-Einwirkungen auf Tragwerke. Schweizerischer Ingenieur und Architekten VereinGoogle Scholar
  113. Sissingh W (1998) Comparative tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: correlation of Alpine foreland events. Tectonophysics 300(1–4):249–284. doi:10.1016/S0040-1951(98)00243-1 CrossRefGoogle Scholar
  114. Slejko DL, Peruzza L, Rebez A (1998) Seismic hazard maps of Italy. Ann Geofis 41(2):183–214Google Scholar
  115. Smit P (1996) Datenerfassung und Bestimmung der Abminderung der Bodenbewegung bei Erdbeben in der Schweiz. PhD thesis, ETH-ZurichGoogle Scholar
  116. Sommaruga A (1999) Décollement tectonics in the Jura foreland fold-and-thrust belt. Mar Pet Geol 16:111–134. doi:10.1016/S0264-8172(98)00068-3 CrossRefGoogle Scholar
  117. Strasser M, Anselmetti FS, Fäh D et al (2006) Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology 34:1005–1008. doi:10.1130/G22784A.1 CrossRefGoogle Scholar
  118. Strasser FO, Bommer JJ, Abrahamson NA (2008) Truncation of the distribution of ground motion residuals. J Seismol 12(1):79–105. doi:10.1007/s10950-007-9073-z CrossRefGoogle Scholar
  119. Taubenheim J (1969) Statistische Auswertung geophysikalischer und meteorologischer Daten, Geophysikalische Monographien, akademische Verlagsgesellschaft Geest & Portig K.-G., LeipzigGoogle Scholar
  120. Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground-motions from earthquakes in central and eastern North America: best estimates and uncertainties. Seismol Res Lett 6:41–57Google Scholar
  121. Truffert C, Burg JP, Cazes M, Bayer R, Damotte B, Rey D (1990) Structures crustales sous le Jura et la Bresse: contraintes sismiques et gravimétriques le long des profils ECORS Bresse-Jura et Alpes II. Mem Soc Geologique Fr 156:157–164Google Scholar
  122. Trümpy R (1985) Die Plattentektonik und Entstehung der Alpen. Orell Füssli, Zurich, SwitzerlandGoogle Scholar
  123. Uhrhammer R (1986) Characteristics of northern and southern California seismicity. Earthq Notes 57:21Google Scholar
  124. Utsu T (1999) Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure Appl Geophys 155(2–4):509–535. doi:10.1007/s000240050276 CrossRefGoogle Scholar
  125. Villemin TF, Alvarez F, Angelier J (1986) The Rhine Graben—extension, subsidence and shoulder uplift. Tectonophysics 128(1–2):47–5. doi:10.1016/0040-1951(86)90307-0 Google Scholar
  126. Waldhauser F, Kissling E, Ansorge J, Mueller S (1998) Three-dimensional interface modelling with two-dimensional seismic data: the Alpine crust-mantle boundary. Geophys J Int 135(1):264–278. doi:10.1046/j.1365-246X.1998.00647.x CrossRefGoogle Scholar
  127. Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70:1337–1346Google Scholar
  128. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002Google Scholar
  129. Wesson RL, Bakun WH, Perkins DM (2003) Association of earthquakes and faults in the San Francisco Bay area using Bayesian inference. Bull Seismol Soc Am 93(3):1306–1332. doi:10.1785/0120020085 CrossRefGoogle Scholar
  130. Wiemer S, Baer M (2000) Mapping and removing quarry blast events from seismicity catalogs. Bull Seismol Soc Am 90:525–530. doi:10.1785/0119990104 CrossRefGoogle Scholar
  131. Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res 102:15115–15128. doi:10.1029/97JB00726 CrossRefGoogle Scholar
  132. Wiemer S, Wyss M (2000) Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90:859–869. doi:10.1785/0119990114 CrossRefGoogle Scholar
  133. Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency–magnitude distribution of earthquakes. Adv Geophys 45:259–302Google Scholar
  134. Wiemer S, Wyss M (2003) Reply to “Comment on ‘Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan,’ by Stefan Wiemer and Max Wyss,” by Paul A. Rydelek and I.S. Sacks. Bull Seismol Soc Am 93(4):1868–1871CrossRefGoogle Scholar
  135. Woo G (1996) Kernel estimation methods for seismic hazard area source modeling. Bull Seismol Soc Am 86:353–362Google Scholar
  136. Wüster J (1993) Discrimination of chemical explosions and earthquakes in central Europe—a case study. Bull Seismol Soc Am 83:1184–1212Google Scholar
  137. Ye S, Ansorge J, Kissling E, Mueller S (1995) Crustal structure beneath the Eastern Swiss Alps derived from seismic-refraction data. Tectonophysics 242(3–4):199–221. doi:10.1016/0040-1951(94)00209-R CrossRefGoogle Scholar
  138. Youngs RR, Swan FH, Power MS, Schwartz DP, Green RK (1987) Probabilistic analysis of earthquake ground shaking hazard along the Wasatch Front, Utah. In: Glori P-L, Hays W-W (eds) Assessment of regional earthquake hazard and risk along the Wasatch Front, Utah. US Geological Survey Open File Report, pp 1–110Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Stefan Wiemer
    • 1
  • Domenico Giardini
    • 1
  • Donat Fäh
    • 1
  • Nicholas Deichmann
    • 1
  • Souad Sellami
    • 1
  1. 1.Swiss Seismological ServiceInstitute of GeophysicsZurichSwitzerland

Personalised recommendations