Skip to main content
Log in

Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties

  • Original article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We present the results of a new genera tion of probabilistic seismic hazard assessment for Switzerland. This study replaces the previous intensity-based generation of national hazard maps of 1978. Based on a revised moment-magnitude earthquake catalog for Switzerland and the surrounding regions, covering the period 1300–2003, sets of recurrence parameters (a and b values, M max ) are estimated. Information on active faulting in Switzerland is too sparse to be used as source model. We develop instead two models of areal sources. The first oriented towards capturing historical and instrumental seismicity, the second guided largely by tectonic principles and express ing the alterative view that seismicity is less stationary and thus future activity may occur in previously quiet regions. To estimate three alterna tive a and b value sets and their relative weighting, we introduce a novel approach based on the modified Akaike information criterion, which allows us to decide when the data in a zone deserves to be fitted with a zone-specific b value. From these input parameters, we simulate synthetic earthquake catalogs of one-million-year duration down to magnitude 4.0, which also reflect the difference in depth distribution between the Alpine Foreland and the Alps. Using a specific predictive spectral ground motion model for Switzerland, we estimate expected ground motions in units of the 5% damped acceleration response spectrum at frequencies of 0.5–10 Hz for all of Switzerland, referenced to rock sites with an estimated shear wave velocity of 1,500 m/s2 in the upper 30 m. The highest hazard is found in the Wallis, in the Basel region, in Graubünden and along the Alpine front, with maximum spectral accelerations at 5 Hz frequency reaching 150 cm/s2 for a return period of 475 years and 720 cm/s2 for 10,000 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahamson NA, Bommer JJ (2005) Probability and uncertainty in seismic hazard analysis. Earthq Spectra 21(2):603–607. doi:10.1193/1.1899158

    Article  Google Scholar 

  • Abrahamson NA, Birkhauser P, Koller M, Mayer-Rosa D, Smit PM, Sprecher C et al (2002) PEGASOS—a comprehensive probabilistic seismic hazard assessment for nuclear power plants in Switzerland. In: Proceedings of the 12 ECEE, London, paper no. 633

  • Akaike H (1974) New look at statistical-model identification. IEEE Trans Automat Contr AC19(6):716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Aki K (1965) Maximum likelihood estimate of b in the formula log N = a – b M and its confidence limits. Bull Earthq Res Inst 43:237–239

    Google Scholar 

  • Ambraseys N (2003) Reappraisal of magnitude of 20th century earthquakes in Switzerland. J Earthq Eng 7:149–191. doi:10.1142/S1363246903001073

    Article  Google Scholar 

  • Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25:371–400. doi:10.1002/(SICI)1096-9845(199604)25:4<371::AID-EQE550>3.0.CO;2-A

    Article  Google Scholar 

  • Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3:1–53. doi:10.1007/s10518-005-0-0183-0

    Article  Google Scholar 

  • Atkinson GM, Beresnev I (1997) Don’t call it stress drop. Seismol Res Lett 68:3–4

    Google Scholar 

  • Bakun WH, Wentworth CM (1999) Estimating earthquake location and magnitude from seismic intensity data (vol 87, p 1502, 1997). Bull Seismol Soc Am 89(2):557–557

    Google Scholar 

  • Bay F (2002) Ground-motion scaling in Switzerland: implications for hazard assessment. PhD thesis no. 14567, Swiss Federal Institute of Technology, Zurich

  • Bay F, Fäh D, Malagnini D, Giardini D (2003) Spectral shear wave ground-motion scaling in Switzerland. Bull Seismol Soc Am 93:414–429. doi:10.1785/0120010232

    Article  Google Scholar 

  • Bay F, Wiemer S, Fäh D, Giardini D (2005) Predictive ground-motions relationships for Switzerland: best estimates and uncertainties. J Seismol 9:223–240. doi:10.1007/s10950-005-5129-0

    Article  Google Scholar 

  • Beauval C, Hainzl S, Scherbaum F (2006) The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation. Bull Seismol Soc Am 96:2465–2471. doi:10.1785/0120060073

    Article  Google Scholar 

  • Becker A, Davenport CA (2003) Rockfalls triggered by the a.d. 1356 Basle earthquake. Terra Nova 15(4):258–264. doi:10.1046/j.1365-3121.2003.00496.x

    Article  Google Scholar 

  • Becker A, Davenport CA, Giardini D (2002) Palaeoseismicity studies on end-Pleistocene and Holocene lake deposits around Basle, Switzerland. Geophys J Int 149(3):659–678. doi:10.1046/j.1365-246X.2002.01678.x

    Article  Google Scholar 

  • Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831–851

    Google Scholar 

  • Bender B, Perkins DM (1987) SEISRISK III: a computer program for seismic hazard estimation. US Geol Surv Bull 1772:20

    Google Scholar 

  • Bommer JJ, Abrahamson NA (2006) Why do modem probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bull Seismol Soc Am 96:1967–1977. doi:10.1785/0120060043

    Article  Google Scholar 

  • Bommer JJ, Abrahamson NA, Strasser FO et al (2004) The challenge of defining upper bounds on earthquake ground motions. Seismol Res Lett 75(1):82–95

    Article  Google Scholar 

  • Bommer JJ, Scherbaum F, Bungum H et al (2005) On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull Seismol Soc Am 95(2):377–389. doi:10.1785/0120040073

    Article  Google Scholar 

  • Bommer JJ, Stafford PJ, Alarcón JE, Akkar S (2007) The influence of magnitude range on empirical ground-motion prediction. Bull Seismol Soc Am 97(6):2152–2170. doi:10.1785/0120070081

    Article  Google Scholar 

  • Boore DM (1983) Stochastic simulation of high-frequency ground-motion based on seismological models of the radiated spectra. Bull Seismol Soc Am 73:1865–1894

    Google Scholar 

  • Boore DM (2001) Fortran programs for simulating ground-motions from earthquakes: version 2.0—a revision of Open-File Report 96-80-A. Open-File Report 00-509, US Geological Survey

  • Boore DM (2003) Prediction of ground-motion using the stochastic method. Pure Appl Geophys 160:635–676. doi:10.1007/PL00012553

    Article  Google Scholar 

  • Boore DM et al (1997) Equations for estimating horizontal response spectra and peak acceleration from western North America earthquakes: a summary of recent work. Seism Res Lett 68:128–153

    Google Scholar 

  • Braunmiller J, Deichmann N, Giardini D, Wiemer S (2005) Homogeneous moment magnitude calibration in Switzerland. Bull Seismol Soc Am 95(1):58–74

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009. doi:10.1029/JB075i026p04997

    Article  Google Scholar 

  • Budnitz RJ, Apostolakis A, Boore DM et al (1997) Recommendations for PSHA: guidance on uncertainty and use of experts (No. NUREG/CR-6372-V1)

  • Burg JP, Van Den Driessche J, Brun JP (1994) Syn- to post-thickening extension in the Variscan Belt of Western Europe: mode and structural consequences. Géol Fr 3:33–51

    Google Scholar 

  • Burkhard M (1990) Aspects of the large-scale Miocene deformation in the most external part of the Swiss Alps (Subalpine Molasse to Jura fold belt). Eclogae Geol Helv 83(3):559–583

    Google Scholar 

  • Choy GL, Boatwright J (1995) Global patterns of radiated seismic energy and apparent stress. J Geophys Res 100:18205–18226. doi:10.1029/95JB01969

    Article  Google Scholar 

  • Coppersmith KJ (1994) Conclusions regarding maximum earthquake assessment. The earthquakes of stable continental regions, 1: assessment of large earthquake potential. Electric Power Research Institute, Report TR-102261-V1, 1: a, 6-1-6-24

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58:1583–1606

    Google Scholar 

  • Cotton F, Scherbaum F, Bommer JJ, Bungum H (2006) Criteria for selecting and adjusting ground-motion models for specific target regions: application to Central Europe and rock sites. J Seismol 10(2):137–156. doi:10.1007/s10950-005-9006-7

    Article  Google Scholar 

  • Deichmann N (1992) Structural and rheological implications of lower-crustal earthquakes below northern Switzerland. Phys Earth Planet Inter 69:270–280. doi:10.1016/0031-9201(92)90146-M

    Article  Google Scholar 

  • Deichmann N, Baer M, Braunmiller J et al (2000) Earthquakes in Switzerland and surrounding regions during 1999. Grunthal 93:23–45

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478. doi:10.1111/j.1365-246X.1990.tb06579.x

    Article  Google Scholar 

  • Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci Rev 61(1–2):43–104. doi:10.1016/S0012-8252(02)00112-5

    Article  Google Scholar 

  • Eckardt P, Funk HP, Labhart T (1983) Postglaziale Krustenbewegungen an der Rhein-Rhone-Linie, Vermessung, Photogrammetrie. Kult Tech 2:43–56

    Google Scholar 

  • Fäh D, Koch K (2002) Discrimination between earthquakes and, chemical explosions by multivariate statistical analysis: a case study for Switzerland. Bull Seismol Soc Am 92(5):1795–1805. doi:10.1785/0120010166

    Article  Google Scholar 

  • Fäh D, Giardini D, Bay F et al (2003) Earthquake Catalogue Of Switzerland (ECOS) and the related macroseismic database. Eclogae Geol Helv 96(2):219–236

    Google Scholar 

  • Field EH, Gupta N, Gupta V et al (2005) Hazard calculations for the WGCEP-2002 earthquake forecast using OpenSHA and distributed object technologies. Seismol Res Lett 76(2):161–167

    Article  Google Scholar 

  • Frankel A (1995) Mapping seismic hazard in the central and eastern United States. Seismol Res Lett 66:8–21

    Google Scholar 

  • Frankel A, Harmsen S, Mueller C et al (1997a) U. S. G. S. national seismic hazard maps: uniform hazard spectra, de-aggregation, and uncertainty. In: Proceedings, FEMA/NCEER workshop on the national representation of seismic ground motion for new and existing bridges

  • Frankel A, Mueller C, Barnhard T et al (1997b) Seismic hazard maps for California, Nevada and western Arizona/Utah. United States Geological Survey Open-File Report, pp 97–130

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64:1363–1367

    Google Scholar 

  • Giardini D (1999) The global seismic hazard assessment program (GSHAP)—1992/1999. Ann Geofis 42:957–974

    Google Scholar 

  • Giardini D, Grünthal G, Shedlock KM, Zhang PZ (1999) The GSHAP global seismic hazard map. Ann Geofis 42(6):1225–1230

    Google Scholar 

  • Grünthal G (1999) Seismic hazard assessment for Central, North and Northwest Europe: GSHAP region 3. Ann Geofis 42(6):999–1011

    Google Scholar 

  • Grünthal G, Mayer-Rosa D, Lenhardt WA (1998) Abschätzung der Erdbebengefährdung für die D-A-CH-Staaten—Deutschland, Österreich, Schweiz. Bautechnik 10:753–767

    Google Scholar 

  • Gutenberg R, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Hsü KJ (1995) The geology of Switzerland. Princeton University Press, Princeton, New Jersey, USA

    Google Scholar 

  • Husen S, Kissling E, Deichmann N, Wiemer S, Giardini D, Baer M (2003) Probabilistic earthquake location in complex three-dimensional velocity models: application to Switzerland. J Geophys Res 108(B2):ESE5.1–ESE5.20. doi:10.1029/2002JB001778

    Article  Google Scholar 

  • Ide S, Beroza G (2001) Does apparent stress vary with earthquake size? Geophys Res Lett 28:3349–3352. doi:10.1029/2001GL013106

    Article  Google Scholar 

  • Ide S, Beroza GC, Prejean SJ, Ellsworth WL (2003) Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. J Geophys Res 108(B5):2271. doi:10.1029/2001JB001617

    Article  Google Scholar 

  • Imoto M (1991) Changes in the magnitude frequency b-value prior to large (M-greater-than-or-equal-to-6.0) earthquakes in Japan. Tectonophysics 193(4):311–325. doi:10.1016/0040-1951(91)90340-X

    Article  Google Scholar 

  • Jaboyedoff M, Pastorelli S (2003) Perturbation of the heat flow by water circulation in a mountainous framework: examples from the Swiss Alps. Eclogae Geol Helv 96:37–47

    Google Scholar 

  • Jiménez MJ, Giardini D, Grünthal G (2003) The ESC-SESAME unified hazard model for the European–Mediterranean region. EMSC/CSEM Newsletter 19:2–4

    Google Scholar 

  • Johnston AC, Coppersmith KJ, Kanter LR, Cornell CA (1994) The earthquakes of stable continental regions, vol. 1: assessment of large earthquake potential. Electric Power Research Institute (EPRI TR-102261-V1)

  • Joyner WB, Boore BM (1981) Peak horizontal acceleration and velocity from strong motion records including records from the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am 71:2011–2083

    Google Scholar 

  • Kagan Y (1999) Universality of the seismic moment–frequency relation. Pure Appl Geophys 155:537–574. doi:10.1007/s000240050277

    Article  Google Scholar 

  • Kagan Y, Jackson DD (2000) Probabilistic forecasting of earthquakes. Geophys J Int 143:438–453. doi:10.1046/j.1365-246X.2000.01267.x

    Article  Google Scholar 

  • Kastrup U (2002) Seismotectonics and stress field variations in Switzerland. PhD thesis no. 14527, ETH Zurich, 153 pp

  • Kastrup U, Zoback ML, Deichmann N, Evans K, Michael AJ, Giardini D (2004) Stress field variations in the Swiss Alps and the northern Alpine Foreland derived from inversion of fault plane solutions. J Geophys Res 109:B01402. doi:10.1029/2003JB002550

    Article  Google Scholar 

  • Kastrup U, Deichmann N, Frohlich A et al (2007) Evidence for an active fault below the northwestern Alpine foreland of Switzerland. Geophys J Int 169(3):1273–1288. doi:10.1111/j.1365-246X.2007.03413.x

    Article  Google Scholar 

  • Kenneth P, Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information—theoretic approach. Springer, New York

    Google Scholar 

  • Kijko A, Graham G (1998) Parametric-historic procedure for probabilistic seismic hazard analysis - Part I: estimation of maximum regional magnitude m(max). Pageoph 152(3):413–442

    Article  Google Scholar 

  • Kijko A, Graham G (1999) “Parametric-historic” procedure for probabilistic seismic hazard analysis—part II: assessment of seismic hazard at specified site. Pure Appl Geophys 154(1):1–22. doi:10.1007/s000240050218

    Article  Google Scholar 

  • Kijko A, Lasocki S, Graham G (2001) Non-parametric seismic hazard in mines. Pure Appl Geophys 158(9–10):1655–1675. doi:10.1007/PL00001238

    Article  Google Scholar 

  • Kissling E (1993) Deep-structure of the Alps—what do we really know. Phys Earth Planet Inter 79(1–2):87–112. doi:10.1016/0031-9201(93)90144-X

    Article  Google Scholar 

  • Klügel JU (2005) Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants. Eng Geol 78(3–4):285–307. doi:10.1016/j.enggeo.2005.01.007

    Article  Google Scholar 

  • Klügel JU (2007) Error inflation in probabilistic seismic hazard analysis. Eng Geol 90(3–4):186–192. doi:10.1016/j.enggeo.2007.01.003

    Article  Google Scholar 

  • Knopoff L (1964) Statistics of earthquakes in California. Bull Seismol Soc Am 54:1871–1873

    Google Scholar 

  • Koch K, Fäh D (2002) Identification of earthquakes and explosions using amplitude ratios: the Vogtland area revisited. Pure Appl Geophys 159(4):735–757. doi:10.1007/s00024-002-8657-3

    Article  Google Scholar 

  • Lomax A, Zollo A, Capuano P, Virieux J (2001) Precise, absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model. Geophys J Int 146(2):313–331. doi:10.1046/j.0956-540x.2001.01444.x

    Article  Google Scholar 

  • Malagnini L, Herrmann RB (2000) Ground-motion scaling in the region of the 1997 Umbria-Marche earthquakes (Italy). Bull Seismol Soc Am 90:1041–1051. doi:10.1785/0119990150

    Article  Google Scholar 

  • Malagnini L, Hermann L, Di Bona L (2000a) Ground-motion scaling in the Apennines (Italy). Bull Seismol Soc Am 90:1062–1081. doi:10.1785/0119990152

    Article  Google Scholar 

  • Malagnini L, RB Herrmann RB, Koch K (2000b) Regional ground-motion scaling in central Europe. Bull Seismol Soc Am 90:1052–1061. doi:10.1785/0119990151

    Article  Google Scholar 

  • Malagnini L, Mayeda K, Uhrhammer R, Akinci A, Herrmann RB (2007) A regional ground-motion excitation/attenuation model for the San Francisco region. Bull Seismol Soc Am 97:843–862. doi:10.1785/0120060101

    Article  Google Scholar 

  • Mayeda K, Walter WR (1996) Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. J Geophys Res 101:11195–11208. doi:10.1029/96JB00112

    Article  Google Scholar 

  • McGuire RK (1976) EQRISK: evaluation of sites for earthquake risk. US Geological Survey, Open File Report, pp 76–67

  • Meghraoui M, Delouis B, Ferry M et al (2001) Active normal faulting in the upper Rhine Graben and paleoseismic identification of the 1356 Basel earthquake. Science 293(5537):2070–2073. doi:10.1126/science.1010618

    Article  Google Scholar 

  • Morasca P, Malagnini L, Akinci A et al (2006) Ground-motion scaling in the Western Alps. J Seismol 10(3):315–333. doi:10.1007/s10950-006-9019-x

    Article  Google Scholar 

  • Musson RMW (2000) The use of Monte Carlo simulations for seismic hazard assessment in the UK. Ann Geofis 43:1–9

    Google Scholar 

  • Musson RMW, Toro GR, Coppersmith KJ et al (2005) Evaluating hazard results for Switzerland and how not to do it: a discussion of “problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants” by J-U Klügel. Eng Geol 82(1):43–55. doi:10.1016/j.enggeo.2005.09.003

    Article  Google Scholar 

  • Ogata Y (1983) Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum-likelihood procedure. J Phys Earth 31(2):115–124

    Google Scholar 

  • Ogata Y (1999) Seismicity analysis through point-process modeling: a review. Pure Appl Geophys 155(2–4):471–507. doi:10.1007/s000240050275

    Article  Google Scholar 

  • Pavoni N, Maurer HR, Roth P, Deichmann N (1997) Seismicity and seismotectonics of the Swiss Alps, deep structures of the Swiss Alps, results of NRP 20. Birkhäuser, Basel, Switzerland, pp 241–250

    Google Scholar 

  • Raoof M, Herrmann RB, Malagnini L (1999) Attenuation and excitation of three-component ground-motion in Southern California. Bull Seismol Soc Am 89:888–902

    Google Scholar 

  • Reasenberg PA (1985) Second-order moment of Central California seismicity. J Geophys Res 90:5479–5495. doi:10.1029/JB090iB07p05479

    Article  Google Scholar 

  • Regenauer-Lieb K, Petit JP (1997) Cutting of the European continental lithosphere: plasticity theory applied to the present Alpine collision. J Geophys Res 102(B4):7731–7746. doi:10.1029/96JB03409

    Article  Google Scholar 

  • Reiter L (1990) Probabilistic seismic hazard analyses—lessons learned—a regulators perspective. Nucl Eng Des 123(2–3):123–128. doi:10.1016/0029-5493(90)90232-M

    Article  Google Scholar 

  • Reiter L (1991) Earthquake hazard analysis. Columbia University Press, 254 pp

  • Rüttener E (1995) Earthquake hazard evaluation for Switzerland, Matériaux pour la Géologie de la Suisse, Géophysique No 29 publié par la Commission Suisse de Géophysique. Schweizerischer Erdbebendienst, Zürich, p 106

  • Rüttener E, Egozcue JJ, Mayerrosa D, Mueller S (1996) Bayesian estimation of seismic hazard for two sites in Switzerland. Nat Hazards 14(2–3):165–178. doi:10.1007/BF00128264

    Google Scholar 

  • Rydelek PA, Sacks IS (1989) Testing the completeness of earthquake catalogs and the hypothesis of self-similarity. Nature 337:251–253. doi:10.1038/337251a0

    Article  Google Scholar 

  • Rydelek PA, Sacks IS (2003) Comment on “Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan,” by Stefan Wiemer and Max Wyss. Bull Seismol Soc Am 93(4):1862–1867

    Article  Google Scholar 

  • Sabetta F, Pugliese A (1987) Attenuation of peak horizontal acceleration and velocity from Italian strong-motion records. Bull Seismol Soc Am 77:1491–1513

    Google Scholar 

  • Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86(2):337–352

    Google Scholar 

  • Sägesser R, Mayer-Rosa D (1978) Erdbebengefährdung in der Schweiz. Schweizerische Bauzeitung SIA 78:3–18

    Google Scholar 

  • Scherbaum F, Schmedes J, Cotton F (2004) On the conversion of source-to-site distance measures for extended earthquake source models. Bull Seismol Soc Am 94(3):1053–1069. doi:10.1785/0120030055

    Article  Google Scholar 

  • Scherbaum F, Bommer JJ, Bungum H, Cotton F, Abrahamson NA (2005) Composite ground-motion models and logic trees: methodology, sensitivities, and uncertainties. Bull Seismol Soc Am 95(5):1575–1593. doi:10.1785/0120040229

    Article  Google Scholar 

  • Scherbaum F, Cotton F, Staedtke H (2006) The estimation of minimum-misfit stochastic models from empirical ground-motion prediction equations. Bull Seismol Soc Am 96(2):427–445. doi:10.1785/0120050015

    Article  Google Scholar 

  • Schmid S, Kissling E (2000) The arc of the western Alps in the light of geophysical data on deep crustal structure. Tectonics 19(1):62–68. doi:10.1029/1999TC900057

    Article  Google Scholar 

  • Schmid SM, Froitzheim N, Pfiffner OA, Schonborn G, Kissling E (1997) Geophysical–geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics 16(1):186–188. doi:10.1029/96TC03723

    Article  Google Scholar 

  • Schnellmann M, Anselmetti FS, Giardini D, Mckenzie JA, Ward SN (2002) Prehistoric earthquake history revealed by lacustrine slump deposits. Geology 30(12):1131–1134. doi:10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2

    Article  Google Scholar 

  • Schnellmann M, Anselmetti FS, Giardini D, Mckenzie JN, Ward SN (2004) Ancient earthquakes at Lake Lucerne. Am Sci 92(1):46–53

    Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2004a) Earthquake statistics at Parkfield: 1. Stationarity of b values. J Geophys Res Solid Earth 109(B12):B12307.1–B12307.17

    Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M, Jackson DD (2004b) Earthquake statistics at Parkfield: 2. Probabilistic forecasting and testing. J Geophys Res Solid Earth 109(B12):B12308.1–B12308.12

    Google Scholar 

  • Schwarz-Zanetti G, Deichmann N, Fäh D et al (2003) The earthquake in Unterwalden on September 18, 1601: a historico-critical macroseismic evaluation. Eclogae Geol Helv 96(3):441–450

    Google Scholar 

  • Shi Y, Bolt BA (1982) The standard error of the magnitude–frequency b value. Bull Seismol Soc Am 72:1677–1687

    Google Scholar 

  • SIA (2003) Norm SIA261-Einwirkungen auf Tragwerke. Schweizerischer Ingenieur und Architekten Verein

  • Sissingh W (1998) Comparative tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: correlation of Alpine foreland events. Tectonophysics 300(1–4):249–284. doi:10.1016/S0040-1951(98)00243-1

    Article  Google Scholar 

  • Slejko DL, Peruzza L, Rebez A (1998) Seismic hazard maps of Italy. Ann Geofis 41(2):183–214

    Google Scholar 

  • Smit P (1996) Datenerfassung und Bestimmung der Abminderung der Bodenbewegung bei Erdbeben in der Schweiz. PhD thesis, ETH-Zurich

  • Sommaruga A (1999) Décollement tectonics in the Jura foreland fold-and-thrust belt. Mar Pet Geol 16:111–134. doi:10.1016/S0264-8172(98)00068-3

    Article  Google Scholar 

  • Strasser M, Anselmetti FS, Fäh D et al (2006) Magnitudes and source areas of large prehistoric northern Alpine earthquakes revealed by slope failures in lakes. Geology 34:1005–1008. doi:10.1130/G22784A.1

    Article  Google Scholar 

  • Strasser FO, Bommer JJ, Abrahamson NA (2008) Truncation of the distribution of ground motion residuals. J Seismol 12(1):79–105. doi:10.1007/s10950-007-9073-z

    Article  Google Scholar 

  • Taubenheim J (1969) Statistische Auswertung geophysikalischer und meteorologischer Daten, Geophysikalische Monographien, akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig

  • Toro GR, Abrahamson NA, Schneider JF (1997) Model of strong ground-motions from earthquakes in central and eastern North America: best estimates and uncertainties. Seismol Res Lett 6:41–57

    Google Scholar 

  • Truffert C, Burg JP, Cazes M, Bayer R, Damotte B, Rey D (1990) Structures crustales sous le Jura et la Bresse: contraintes sismiques et gravimétriques le long des profils ECORS Bresse-Jura et Alpes II. Mem Soc Geologique Fr 156:157–164

    Google Scholar 

  • Trümpy R (1985) Die Plattentektonik und Entstehung der Alpen. Orell Füssli, Zurich, Switzerland

  • Uhrhammer R (1986) Characteristics of northern and southern California seismicity. Earthq Notes 57:21

    Google Scholar 

  • Utsu T (1999) Representation and analysis of the earthquake size distribution: a historical review and some new approaches. Pure Appl Geophys 155(2–4):509–535. doi:10.1007/s000240050276

    Article  Google Scholar 

  • Villemin TF, Alvarez F, Angelier J (1986) The Rhine Graben—extension, subsidence and shoulder uplift. Tectonophysics 128(1–2):47–5. doi:10.1016/0040-1951(86)90307-0

    Google Scholar 

  • Waldhauser F, Kissling E, Ansorge J, Mueller S (1998) Three-dimensional interface modelling with two-dimensional seismic data: the Alpine crust-mantle boundary. Geophys J Int 135(1):264–278. doi:10.1046/j.1365-246X.1998.00647.x

    Article  Google Scholar 

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70:1337–1346

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wesson RL, Bakun WH, Perkins DM (2003) Association of earthquakes and faults in the San Francisco Bay area using Bayesian inference. Bull Seismol Soc Am 93(3):1306–1332. doi:10.1785/0120020085

    Article  Google Scholar 

  • Wiemer S, Baer M (2000) Mapping and removing quarry blast events from seismicity catalogs. Bull Seismol Soc Am 90:525–530. doi:10.1785/0119990104

    Article  Google Scholar 

  • Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times? J Geophys Res 102:15115–15128. doi:10.1029/97JB00726

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90:859–869. doi:10.1785/0119990114

    Article  Google Scholar 

  • Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency–magnitude distribution of earthquakes. Adv Geophys 45:259–302

    Google Scholar 

  • Wiemer S, Wyss M (2003) Reply to “Comment on ‘Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan,’ by Stefan Wiemer and Max Wyss,” by Paul A. Rydelek and I.S. Sacks. Bull Seismol Soc Am 93(4):1868–1871

    Article  Google Scholar 

  • Woo G (1996) Kernel estimation methods for seismic hazard area source modeling. Bull Seismol Soc Am 86:353–362

    Google Scholar 

  • Wüster J (1993) Discrimination of chemical explosions and earthquakes in central Europe—a case study. Bull Seismol Soc Am 83:1184–1212

    Google Scholar 

  • Ye S, Ansorge J, Kissling E, Mueller S (1995) Crustal structure beneath the Eastern Swiss Alps derived from seismic-refraction data. Tectonophysics 242(3–4):199–221. doi:10.1016/0040-1951(94)00209-R

    Article  Google Scholar 

  • Youngs RR, Swan FH, Power MS, Schwartz DP, Green RK (1987) Probabilistic analysis of earthquake ground shaking hazard along the Wasatch Front, Utah. In: Glori P-L, Hays W-W (eds) Assessment of regional earthquake hazard and risk along the Wasatch Front, Utah. US Geological Survey Open File Report, pp 1–110

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wiemer.

Electronic Supplementary Material

Below is the linked to the Electronic supplementary material.

(PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiemer, S., Giardini, D., Fäh, D. et al. Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties. J Seismol 13, 449–478 (2009). https://doi.org/10.1007/s10950-008-9138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-008-9138-7

Keywords

Navigation