Journal of Seismology

, Volume 12, Issue 2, pp 217–221 | Cite as

Key elements of regional seismic velocity models for long period ground motion simulations

  • Thomas M. Brocher
Original Article


Regional 3-D seismic velocity models used for broadband strong motion simulations must include compressional-wave velocity (Vp), shear-wave velocity (Vs), intrinsic attenuation (Qp, Qs), and density. Vs and Qs are the most important of these parameters because the strongest ground motions are generated chiefly by shear- and surface-wave arrivals. Because Vp data are more common than Vs data, many researchers first develop a Vp model and convert it to a Vs model. I describe recent empirical relations between Vs, Vp, Qs, Qp, and density that allow velocity models to be rapidly and accurately calculated.


Seismic Velocity Attenuation Shear Compressional Density 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aagaard B (2006) Finite-element simulations of ground motions in the San Francisco bay area from large earthquakes on the San Andreas Fault. Seismol Res Lett 77:275Google Scholar
  2. Brocher TM (2005a) Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull Seismol Soc Am 95:2081–2092CrossRefGoogle Scholar
  3. Brocher TM (2005b) Compressional and shear wave velocity versus depth in the San Francisco Bay Area, California: Rules for USGS Bay Area velocity model 05.0.0. U.S. Geol Surv Open-File Rept 2005-1317, 58 p.
  4. Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50:571–581CrossRefGoogle Scholar
  5. Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139–3156CrossRefGoogle Scholar
  6. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788CrossRefGoogle Scholar
  7. Frankel A, Vidale J (1992) A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock. Bull Seismol Soc Am 82:2045–2074Google Scholar
  8. Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density – the diagnostic basics for stratigraphic traps. Geophysics 39:770–780CrossRefGoogle Scholar
  9. Godfrey NJ, Beaudoin BC, Klemperer SL, the Mendocino Working Group USA (1997) Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: implications for crustal growth at the North American continental margin. Geol Soc Amer Bull 109:1536–1562CrossRefGoogle Scholar
  10. Graves R (1995) Preliminary analysis of long-period basin response in the Los Angeles region from the 1994 Northridge earthquake. Geophys Res Lett 22:101–104CrossRefGoogle Scholar
  11. Graves R (2006) Broadband ground motion simulations for earthquakes in the San Francisco bay region. Seismol Res Lett 77:275Google Scholar
  12. Graves RW, Pitarka A (2004) Broadband time history simulation using a hybrid approach. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, paper no. 1098Google Scholar
  13. Hickman SH, Zoback MD, Ellsworth WL (2005) Structure and composition of the San Andreas fault zone at Parkfield: initial results from SAFOD phases 1 and 2. Eos Trans. AGU, 86(52), Fall Meet. Suppl., Abstract T25E-05Google Scholar
  14. Joyner WB (2000) Strong motion from surface waves in deep sedimentary basins. Bull Seismol Soc Am 90:S95–S112CrossRefGoogle Scholar
  15. Kagawa T, Zhao B, Miyakoshi K, Irikura K (2004) Modeling of 3D basin structures for seismic wave simulations based on available information on the target area: case study of the Osaka Basin, Japan. Bull Seismol Soc Am 94:1353–1368CrossRefGoogle Scholar
  16. Koketsu K, Hatayama K, Furumura T, Ikegami Y, Akiyama S (2005) Damaging long-period ground motions from the 2003 Mw8.3 Tokachi-oki, Japan earthquake. Seismol Res Lett 76:67–73Google Scholar
  17. Larsen S, Dreger D, Dolenc D (2006) Simulations of the 1906 San Francisco earthquake using high performance computing. Seismol Res Lett 77:275Google Scholar
  18. Ludwig WJ, Nafe JE, Drake CL (1970) Seismic refraction. In: Maxwell AE (ed) The sea, vol 4. Wiley-Interscience, New York, pp 53–84Google Scholar
  19. Olsen KB (2000) Site amplification in the Los Angeles basin from three-dimensional modeling of ground motion. Bull Seismol Soc Am 90:S77–S94CrossRefGoogle Scholar
  20. Olsen KB, Day SM, Bradley CR (2003) Estimation of Q for long-period (2 sec) waves in the Los Angeles Basin. Bull Seismol Soc Am 93:627–638CrossRefGoogle Scholar
  21. Parsons T, Blakely RJ, Brocher TM (2001) A simple algorithm for sequentially incorporating gravity observations in seismic traveltime tomography. Int Geol Rev 43:1073–1086CrossRefGoogle Scholar
  22. Rodgers A, Petersson A, Nilsson S, Sjogreen B, McCandless K, Tkalcic H (2006) Regional and global scale modeling the great 1906 San Francisco earthquake. Seismol Res Lett 77:271Google Scholar
  23. Wald D, Graves R (1998) The seismic response of the Los Angeles basin, California. Bull Seismol Soc Am 93:283–300Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.U.S. Geological SurveyMenlo ParkUSA

Personalised recommendations