Journal of Seismology

, Volume 10, Issue 2, pp 247–257 | Cite as

M L Determination for Local and Regional Events Using a Sparse Network in Southwestern Germany

Original Article


A method for the determination of consistent local magnitude M L values (Richter scale, or M WA) for earthquakes with epicentral distances ranging from 10 km through 1000 km is demonstrated. The raw data consists of nearly 1300 amplitude readings from a network of six digital seismographs in Baden–Württemberg (Southwestern Germany) during 26 months starting in 1995, later extended by another 1000 amplitude readings until 1999. Relying on most of the basics introduced by C.F. Richter a three-parameter attenuation curve (distance correction, magnitude-distance relation) for Baden–Württemberg and adjacent areas is presented. Station corrections are evaluated and the attenuation curve is calibrated with respect to other agencies for distances greater than 650 km. Reasonable parametrisations are discussed and meaningful error bars are attributed. Finally, a seventh station is incorporated by means of its station correction alone, without needing to update the attenuation curve.


Local magnitude ML Attenuation curve Station correction Bootstrap error bars European earthquakes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakun WH, Joyner WB (1984) The ML scale in central California. Bull Seis Soc Am 74:1827–1843Google Scholar
  2. Ben-Zion Y (2001) On quantification of the earthquake source. SRL 72:151–152Google Scholar
  3. Bormann P, Bergman E (eds) (2002) The new manual of observatory practice. GeoForschungsZentrum Potsdam, GermanyGoogle Scholar
  4. Bragato PL, Tento A (2005) Local magnitudes in northeastern Italy. Bull Seis Soc Am 95.2:579–591CrossRefGoogle Scholar
  5. Brüstle W, Stange S (2002) Earthquakes in Baden-Württemberg, 2000; Bulletin of the Earthquake Survey of the State Bureau for Geology, Natural Resources and Mining Baden-Württemberg, FreiburgGoogle Scholar
  6. Douglas J, Suhadolc P, Costa G (2004) On the incorporation of the effect of crustal structure into empirical strong ground motion estimation. Bull Earthquake Engineering 2(1):75–99Google Scholar
  7. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife and cross–validation. The American Statistician 37:36–48CrossRefGoogle Scholar
  8. Ferdinand RW (1998) Average attenuation of 0.7–5.0Hz Lg waves and magnitude scale determination for the region bounding the western branch of the East African Rift. Geophys J Int 134:818–830CrossRefGoogle Scholar
  9. Gasperini P (2002) Local magnitude revaluation for recent Italian earthquakes (1981–1986). J Seis 6.(4):503–524CrossRefGoogle Scholar
  10. Henger M, Leydecker G (eds) (2000) Erdbeben in Deutschland 1994, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, p 47Google Scholar
  11. Hough S (2000) On the scientific value of “Unscientific” data. SRL 71:483–485Google Scholar
  12. Hutton LK, Boore DM (1987) The ML scale in southern California. Bull Seis Soc Am 77:2074–2094Google Scholar
  13. Jennings PC, Kanamori H (1983) Effect of distance on local magnitudes found from strong–motion records. Bull Seis Soc Am 73:265–280Google Scholar
  14. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987CrossRefGoogle Scholar
  15. Kanamori H (1983) Magnitude scale and quantification of earthquakes. Tectonophysics 93:185–199CrossRefGoogle Scholar
  16. Kim W-Y (1998) The ML scale in Eastern North America. Bull Seis Soc Am 88:935–951Google Scholar
  17. Kvamme LB, Hansen RA, Bungum H (1995) Seismic–source and wave–propagation effects of Lg waves in Scandinavia. Geophys J Int 120:525–536CrossRefGoogle Scholar
  18. Langston CA, Brazier R, Nyblade AA, Owens TJ (1998) Local magnitude and seismicity rate for Tanzania, East Africa. Bull Seis Soc Am 88:712–721Google Scholar
  19. Leydecker G (1986) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 1000–1981, in: Geologisches Jahrbuch, E36, 3-83, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.Google Scholar
  20. Leydecker G, Aichele H (1998) Seismogeographical regionalisation of Germany: the prime example for third–level regionalisation. in: Geologisches Jahrbuch, E55, 85–98, Bundesanstalt für Geowissenschaften und Rohstoffe,Hannover.Google Scholar
  21. Nicolas M, Massinon B, Mechler P, Bouchon M (1982) Attenuation of regional phases in western Europe. Bull Seis Soc Am 72:2089–2106Google Scholar
  22. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical Recipes. Cambridge University Press, New York, p 993Google Scholar
  23. Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seis Soc Am 25:1–31Google Scholar
  24. Richter CF (1958) Elementary Seismology. W. H. Freeman and Co., San Francisco, pp 578Google Scholar
  25. Schick R, Wielandt E (1994) Zur Geschichte der instrumentellen Erdbebenbeobachtung und Erdbebenforschung in Württemberg und Hohenzollern. Jh Ges Naturkde Württemberg 149:75–98Google Scholar
  26. Shearer PM (1997) Improving local earthquake locations using the L1 norm and waveform cross correlation: application to the Whittier Narrows, California, aftershock sequence. J Geoph Res 102:8269–8283CrossRefGoogle Scholar
  27. Stange S, Friederich W (1993) Surface wave dispersion and upper mantle structure beneath Southern Germany from joint inversion of network recorded teleseismic events. Geoph Res Lett 20:2375–2378CrossRefGoogle Scholar
  28. Uhrhammer RA, Loper SJ, Romanowicz B (1996) Determination of local magnitude using BDSN broadband records. Bull Seis Soc Am 86:1314–1330Google Scholar
  29. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans Amer Geophys U 72(441):445–446Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Regierungspräsidium FreiburgReferat Landeserdbebendienst Baden-Württemberg; Landesamt für GeologieFreiburg i. BreisgauGermany

Personalised recommendations