Advertisement

Journal of Seismology

, Volume 9, Issue 1, pp 87–98 | Cite as

Estimation of site amplifications from shear-wave velocity profiles in Yeşilyurt and Avcılar, Istanbul, by frequency–wavenumber analysis of microtremors

  • Ebru Bozdağ
  • Argun H. Kocaoğlu
Article

Abstract

During the M w = 7.4 Izmit earthquake of 17 August 1999, the Yeşilyurt district of Istanbul underwent damage despite the epicentral distance of 90 km. At Avcılar (20 km west of Yeşilyurt), the ground motion was even stronger and has caused heavy damage and fatalities. We investigate whether the observed ground motions can be explained by theoretical site amplifications calculated from one-dimensional (1-D) shear-wave velocity models. For this purpose, microtremors recorded with sensor-arrays set up at two sites were analyzed to obtain phase velocity dispersion curves using both the conventional and the Capon frequency–wavenumber (f–k) methods. At the Yeşilyurt site, the conventional f–k method offered reliable phase velocity estimations whereas the Capon method showed scatter in the estimations. At the Avcılar site, on the other hand, the Capon method provided a higher resolution than the conventional method and hence, allowed estimation of wavelengths up to seven times the array size. At the Yeşilyurt site, the shallow shear-wave velocity profile that is correlated with the lithology obtained from boreholes yields a ground motion amplification factor of about 3 at the frequency of 1 Hz. At the Avcılar site, the phase velocity dispersion curve is comparable with the one previously obtained using the spatial autocorrelation method. The site amplification factors calculated from the 1-D shear-wave velocity model are around 2–3 at the frequencies of 0.4, 1.2 and 2.3 Hz, which are about 2–3 times smaller than the amplifications obtained from reference-site techniques using weak/strong motion records of earthquakes. We suggest that the discrepancy may be caused by a 2- or 3-D effect introduced by surface and/or bedrock topography not accounted for by the horizontally stratified model considered here.

Keywords

dispersion f–k method microtremors shear-wave velocity site amplification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., 1957, Space and time spectra of stationary stochastic waves, with special reference to microtremors, Bull. Earthquake Res. Inst. Tokyo Univ. 35, 415–457.Google Scholar
  2. Beresnev, I.A., Field, E.H., Van Den Abeele, K. and Johnson, P.A., 1998, Magnitude of nonlinear sediment response in Los Angeles basin during the 1994 Northridge, California, Earthquake, Bull. Seismol. Soc. Am. 88, 1079–1084.Google Scholar
  3. Bergstrom, J., 1999, Non-destructive testing of ground strength using the SASW-method, The Symposium on the Application of Geophysics to Engineering and Environmental Problems, Conference Proceedings, March 14–18, Oakland, CA, 57–65.Google Scholar
  4. Bettig, B., Bard, P.-Y., Scherbaum, F., Riepl, J., Cotton, F., Cornou, C. and Hatzfeld, D., 2001, Analysis of dense array noise measurements using the modifed spatial auto-correlation method (SPAC). Application to the Grenoble area, Bollettino di Geofisica Teorica ed Applicata, 42(3–4), 281–304.Google Scholar
  5. Bonilla, L.F., Steidl, J.H., Lindley, G.T., Tumarkin, A.G. and Archuleta, R.J., 1997, Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, coda, and H/V methods, Bull. Seismol. Soc. Am. 87, 710–730.Google Scholar
  6. Boore, D.M., 2003, SMSIM-FORTRAN Programs for Simulating Ground Motions from Earthquakes: Version 2.0-A Revision of OFR-96-80-A, U. S. Geological Survey Open-File Report.Google Scholar
  7. Brown, L.T., Boore, D.M. and Stokoe, K.H. II, 2002, Comparison of shear-wave slowness profiles at 10 strong-motion sites from noninvasive SASW measurements and measurements made in boreholes, Bull. Seismol. Soc. Am. 92, 3116–3133.Google Scholar
  8. Capon, J., 1969, High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE 57, 1408–1418.Google Scholar
  9. Ergin, M., Özalaybey, S., Aktar, M. and Yalçın, M.N., in press, Site amplification at Avcılar, Istanbul, Tectonophysics 391, 335–346.Google Scholar
  10. Field, E.H., Hough, S.E. and Jacob, K.H., 1990, Using microtremors to assess potential earthquake site response: A case study in Flushing Meadows, New York City, Bull. Seismol. Soc. Am. 80, 1456–1480.Google Scholar
  11. Hartzell, S., Leeds, A., Frankel, A. and Michael, J., 1996, Site response for urban Los Angeles using aftershocks of the Northridge Earthquake, Bull. Seismol. Soc. Am. 86, 168–192.Google Scholar
  12. Herece, E. and Şentürk, K., 2000, Hava Harp Okulu yerleşim alanı zemininin deprem davranışı açısından incelenmesi projesi: Bölgenin jeolojisi (proje başkanı: Erdal Herece), M.T.A. Genel Müdürlüğü ve S.D. Üniversitesi, Ankara.Google Scholar
  13. Herrmann, R.B. and Ammon, C.J., 2002, Computer Programs in Seismology, Vol. IV, St. Louis University, Missouri.Google Scholar
  14. Horike, M., 1985, Inversion of phase velocity of long-period microtremors to the S-wave velocity structure down to the basement in urbanized areas, J. Phys. Earth 33, 59–96.Google Scholar
  15. Johnson, D.H. and Dudgeon, D.E., 1993, Array Signal Processing, Prentice Hall, New Jersey, pp. 533.Google Scholar
  16. Kadınkız, G., Ölmez, T., Basa, F. and Koç, E., 2000, Hava Harp Okulu yerleşim alanı zemininin deprem davranışı açısından incelenmesi projesi: Jeoteknik amaçlı sondajlar ve bunlara ait deney sonuçlari (proje başkanı: Erdal Herece), M.T.A. Genel Müdürlüğü ve S.D. Üniversitesi, Ankara.Google Scholar
  17. Kagami, H., Duke, C.M., Liang, G.C. and Ohta, Y., 1982, Observations of 1- to 5- second microtremors and their application to earthquake engineering. Part II. Evaluation of site effect upon seismic wave amplification due to extremely deep soil deposits, Bull. Seismol. Soc. Am. 72, 987–998.Google Scholar
  18. Kudo, K., Kanno, T., Okada, H., Özel, O., Erdik, M., Sasatani, T., Higashi, S., Takahashi, M. and Yoshida, K., 2002, Site-specific issues for strong ground motions during the Izmit, Turkey, Earthquake of 17 August 1999, as inferred from array observations of microtremors and aftershocks, Bull. Seismol. Soc. Am. 92, 448–465.Google Scholar
  19. Lacoss, R.T., Kelly, E.J. and Toksöz, M.N., 1969, Estimation of seismic noise structure using arrays, Geophysics 34, 21–38.Google Scholar
  20. Liu, H.P., Moore, D.M., Joyner, W.B., Oppenheimer, D.H., Warrick, R.E., Zhang, W., Hamilton, J.C. and Brown, L.T., 2000, Comparison of phase velocities from array measurements of Rayleigh waves associated with microtremor and results calculated from borehole shear-wave velocity profiles, Bull. Seismol. Soc. Am. 90, 666–678.Google Scholar
  21. Louie, J.N., 2001, Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bull. Seismol. Soc. Am. 91, 347–364.Google Scholar
  22. Malagnini, L., Rovelli, A., Hough, S.E. and Seeber, L., 1993, Site amplification estimates in the Garigliano Valley, Central Italy, based on dense array measurements of ambient noise, Bull. Seismol. Soc. Am. 83, 1744–1755.Google Scholar
  23. Malagnini, L., Tricario, P., Rovelli, A., Herrmann, R.B., Opice, S., Biella, G. and de Franco, R., 1996, Explosion, earthquake, and ambient noise recordings in a Pliocene sediment-filled valley: Inferences on seismic response properties by reference- and non-reference-site techniques, Bull. Seismol. Soc. Am. 86, 670–682.Google Scholar
  24. Malagnini, L., Herrmann, H.B., Mercuri, A., Opice, S., Biella, G. and de Franco, R., 1997, Shear-wave velocity structure of sediments from the inversion of explosion-induced Rayleigh waves: Comparison with cross-hole measurements, Bull. Seismol. Soc. Am. 87, 1413–1421.Google Scholar
  25. McMechan, G.A. and Yedlin, M.J., 1981, Analysis of dispersive waves by wave field transformation, Geophysics 46, 869–874.Google Scholar
  26. Milana, G., Barba, S., Del Pezzo, E. and Zambonelli, E., 1996, Site response from ambient noise measurements: New perspectives from an array study in Central Italy, Bull. Seismol. Soc. Am. 86, 320–328.Google Scholar
  27. Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, Quart. Rep. Railway Tech. Res. Inst. 30, 25–33.Google Scholar
  28. Nazarian, S., Stokoe, K.H. II and Hudson, W.R., 1983, Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems, Transport. Res. Record 930, 38–45.Google Scholar
  29. Nguyen, F., Van Rompaey, G., Teerlynck, H., Van Camp, M., Jongmans, D. and Camelbeeck, T., 2004, Use of microtremor measurement for assessing site effects in Northern Belgium-interpretation of the observed intensity during the Ms = 5.0 June 11 1938 earthquake, J. Seismol. 8, 41–56.Google Scholar
  30. Ohori, M., Nobata, A. and Wakamatsu, K., 2002, A comparison ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays, Bull. Seismol. Soc. Am. 92, 2323–2332.Google Scholar
  31. Özel, O., Cranswick, E., Meremonte, M., Erdik, M., Şafak, E., 2002, Site effect in Avcılar, west of Istanbul, Turkey from strong and weak motion data, Bull. Seismol. Soc. Am. 92, 499–508.Google Scholar
  32. Park, C.B., Miller, R.D. and Xia, J., 1999a, Multichannel analysis of surface waves, Geophysics 64, 800–808.Google Scholar
  33. Park, C.B., Miller, R.D. and Xia, J., 1999b, Multimodal analysis of high frequency surface waves, The Symposium on the Application of Geophysics to Engineering and Environmental Problems, Conference Proceedings, March 14–18, Oakland, CA, 115–121.Google Scholar
  34. Saccorotti, G., Chouet, B. and Dawson, P., 2003, Shallow-velocity models at the Kilauea Volcano, Hawaii, determined from array analyses of tremor wavefields, Geophys. J. Int. 152, 633–648.Google Scholar
  35. Satoh, T., Kawase, H. and Matsushima, S., 2001a, Estimation of S-wave velocity structures in and around the Sendai Basin, Japan, using array records of microtremors, Bull. Seismol. Soc. Am. 91, 206–218.Google Scholar
  36. Satoh, T., Kawase, H., Iwata, T., Higashi, S., Sato, T., Irikura, K. and Huang, H.C., 2001b, S-wave velocity structure of the Taichung Basin, Taiwan, estimated from array and single-station records of microtremors, Bull. Seismol. Soc. Am. 91, 1267–1282.Google Scholar
  37. Seekins, L.C., Wennerberg, L., Margheriti, L. and Liu, H.P., 1996, Site amplification at five locations in San Francisco, California: A comparison of S waves, codas, and microtremors, Bull. Seismol. Soc. Am. 86, 627–635.Google Scholar
  38. Seligson, C.D., 1970, Comments on “high-resolution frequency-wavenumberspectum analysis”, Proc. IEEE 58, 947–949.Google Scholar
  39. Svensson, M., Bernstone, C. and Dahlin, T., 1999, The combination of the SASW method and DC-resistivity in characterization of old landfills, The Symposium on the Application of Geophysics to Engineering and Environmental Problems, Conference Proceedings, March 14–18, Oakland, CA, 123–131.Google Scholar
  40. Şahin, H. and Lezgi, A., 2000, Hava Harp Okulu yerleşim alanı zemininin deprem davranışı açısından incelenmesi projesi: Jeofizik çalışmaları ve rezistivite uygulamalari (proje başkanı: Erdal Herece), M.T.A. Genel Müdürlüğü ve S.D. Üniversitesi, Ankara.Google Scholar
  41. Türker E. and Bozcu, M., 2001, Hava Harp Okulu yerleşim alanı zemininin deprem davranışı açısından incelenmesi projesi: Jeofizik çalışmaları, sismik ve jeoteknik çalışmalar (proje başkanı: Erdal Herece), M.T.A. Genel Müdürlüğü ve S.D. Üniversitesi, Ankara.Google Scholar
  42. Zarif, İ.H., Tuğrul, A. and Gürpinar, O., 1998, Avcılar kampüs alanının yerleşime uygunluğunun değerlendirilmesi, Kentleşme ve Jeoloji Sempozyumu, Uluslararası Mühendislik Jeolojisi Türk Milli Komitesi, TMMOB Jeoloji Mühendisleri Odasi, İstanbul Şubesi Avcılar Belediye Baskanlığı, İstanbul, 219–232.Google Scholar
  43. Zywicki, D.J., 1999, Advanced Signal Processing Methods Applied to Engineering Analysis of Seismic Surface Waves, PhD Thesis, Georgia Institute of Technology, Atlanta.Google Scholar
  44. Zywicki, D.J. and Rix, G.J., 1999, Frequency-wavenumber analysis of passive surface waves, The Symposium on the Application of Geophysics to Engineering and Environmental Problems, Conference Proceedings, March 14–18, Oakland, CA, 75–84.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Geophysical Engineering, Faculty of MinesIstanbul Technical University, MaslakIstanbulTurkey

Personalised recommendations