Mn Doping of BiFeO3 for Microstructure and Electromagnetic Characteristics


Mn doping of BiFeO3 for microstructure and electromagnetic characteristics was investigated in BiFe1–xMnxO3 (x = 0.0, 0.05, 0.10, 0.15) nanoparticles synthesized by sol-gel preparation technique. XRD and HR-TEM research reveals that the phase structure of nanoparticles changes from rhombohedral (R3c) for BiFeO3 to cubic (Pm\( \overline{3} \)m) for BiFe0.9Mn0.1O3. The morphological characteristics show that the average particle sizes of the Mn-doped BiFeO3 nanoparticles were decreased as compared with that of the original BiFeO3. XPS spectroscopy analysis showed that Fe and Mn elements exist in the nanoparticles in the form of Fe2+/Fe3+ and Mn3+/Mn4+ valence states, respectively. PPMS-VSM and VAN analysis showed that a certain content of Mn doping can significantly improve the magnetic and microwave absorbing property of BiFeO3. At room temperature, the remnant magnetization and coercive field of the BiFe0.95Mn0.05FeO3 nanopowders were 0.08 emu/g and 6216 Oe, respectively. The minimum RL of BiFe0.95Mn0.05FeO3 can reach about − 29.41 dB at 10.39 GHz at 2.20 mm thickness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Cao, M.S., Chen, H., Wang, X.X., et al.: Graphene nanohybrid: excellent electromagnetic properties for electromagnetic wave absorbing and shielding. J. Mater. Chem. C. 6, 4586–4602 (2018)

    Article  Google Scholar 

  2. 2.

    Lv, H., Yang, Z., Wang, P.L., et al.: A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018)

    Article  Google Scholar 

  3. 3.

    Wang, C., Murugadoss, V., Kong, J., et al.: Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon. 140, 696–733 (2018)

    Article  Google Scholar 

  4. 4.

    Wang, G.Z., Gao, Z., Tang, S.W., et al.: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano. 6, 11009 (2012)

    Article  Google Scholar 

  5. 5.

    Duan, W.J., Li, X.D., Wang, Y., et al.: Surface functionalization of carbonyl iron with aluminum phosphate coating toward enhanced anti-oxidative ability and microwave absorption properties. Appl. Surf. Sci. 427, 594–602 (2018)

    ADS  Article  Google Scholar 

  6. 6.

    Huang, B., Yue, J.L., Wei, Y.S., et al.: Enhanced microwave absorption properties of carbon nanofibers functionalized by FeCo coatings. Appl. Surf. Sci. 483, 98–105 (2019)

    ADS  Article  Google Scholar 

  7. 7.

    Liu, Y., Chen, Z., Xie, W.H., et al.: Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology. J. Alloys Compd. 809, 151837 (2019)

    Article  Google Scholar 

  8. 8.

    Park, T.J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., et al.: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766–772 (2007)

    ADS  Article  Google Scholar 

  9. 9.

    Yao, Q.R., Shen, Y.H., Yang, P.C., et al.: Structure, phase diagram and magnetic properties of Bi1–xLaxFeO3 solid solution. Ceram. Int. 42, 6100–6106 (2016)

    Article  Google Scholar 

  10. 10.

    Khajonrit, J., Wongpratat, U., Kidkhunthod, P., et al.: Effects of Co doping on magnetic and electrochemical properties of BiFeO3 nanoparticles. J. Magn. Magn. Mater. 449, 423–434 (2018)

    ADS  Article  Google Scholar 

  11. 11.

    Kumar, M.M., Palkar, V.R., Srinivas, K., et al.: Ferroelectricity in a pure BiFeO3 ceramic. Appl. Phys. Lett. 76, 2764–2766 (2000)

    ADS  Article  Google Scholar 

  12. 12.

    Khomchenko, V.A., Karpinsky, D.V., Pereira, L.C.J., et al.: Mn substitution-modified polar phase in the Bi1−xNdxFeO3 multiferroics. J. Appl. Phys. 113, 214112 (2013)

    ADS  Article  Google Scholar 

  13. 13.

    Hou, Z.L., Zhou, H.F., Kong, L.B., et al.: Enhanced ferromagnetism and microwave absorption properties of BiFeO3 nanocrystals with Ho substitution. Mater. Lett. 84, 110–113 (2012)

    Article  Google Scholar 

  14. 14.

    Yun, X.J., Wu, Q.F., Feng, L., et al.: Microwave absorption enhancement of e-Fe3O4@C microspheres by core surface modification. J. Alloys Compd. 835, 155307 (2020)

    Article  Google Scholar 

  15. 15.

    Yao, Q.R., Cai, J., Zhou, H.Y., et al.: Influence of La-doping on structure and magnetic behaviors in BiFeO3. J. Alloys Compd. 633, 170 (2015)

    Article  Google Scholar 

  16. 16.

    Rusly, S.N.A., Ismail, I., Matori, K.A., et al.: Influence of different BFO filler content on microwave absorption performances in BiFeO3/epoxy resin composites. Ceram. Int. 46, 737–746 (2020)

    Article  Google Scholar 

  17. 17.

    Chakrabarti, K., Das, K., Sarkar, B., et al.: Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles. Appl. Phys. Lett. 101, 042401 (2012)

    ADS  Article  Google Scholar 

  18. 18.

    Kang, Y.Q., Cao, M.S., Yuan, J., et al.: Microwave absorption properties of multiferroic BiFeO3 nanoparticles. Mater. Lett. 63, 1344–1346 (2009)

    Article  Google Scholar 

  19. 19.

    Zhang, M., Yang, H.J., Li, Y., et al.: Cobalt doping of bismuth ferrite for matched dielectric and magnetic loss. Appl. Phys. Lett. 115, 212902 (2019)

    ADS  Article  Google Scholar 

  20. 20.

    Li, Y., Yang, H.J., Yang, W.G., et al.: Structure, ferromagnetism and microwave absorption properties of La substituted BiFeO3 nanoparticles. Mater. Lett. 111, 130–133 (2013)

    Article  Google Scholar 

  21. 21.

    Sosnowska, I., Przeniosło, R., Fischer, P., et al.: Neutron diffraction studies of the crystal and magnetic structures of BiFeO3 and Bi0.93La0.07FeO3. J. Magn. Magn. Mater. 160, 384–385 (1996)

    ADS  Article  Google Scholar 

  22. 22.

    Zalesskii, A.V., Frolov, A.A., Khimich, T.A., et al.: Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a Bi1–xLaxFeO3 system studied using Fe-57 NMR. Phys. Solid State. 45, 141–145 (2003)

    ADS  Article  Google Scholar 

  23. 23.

    Gupta, S., Tomar, M., Gupta, V.: Ferroelectric photovoltaic properties of Ce and Mn codoped BiFeO3 thin film. J. Appl. Phys. 115, 014102 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    Verma, K.C., Kotnala, R.K.: Tailoring the multiferroic behaviors in BiFeO3 nanostructures by Pb doping. RSC Adv. 6, S7727–S7738 (2016)

    Google Scholar 

  25. 25.

    Ianculescu, A., Gheorghiu, F.P., Postolache, P., et al.: The role of doping on the structural and functional properties of BiFe1−xMnxO3 magnetoelectric ceramics. J. Alloys Compd. 504, 420–426 (2010)

    Article  Google Scholar 

  26. 26.

    Dutta, D.P., Tyagi, A.K.: Effect of Sm3+ and Zr4+ codoping on the magnetic, ferroelectric and magnetodielectric properties of sonochemically synthesized BiFeO3 nanorods. Appl. Surf. Sci. 450, 429–440 (2018)

    ADS  Article  Google Scholar 

  27. 27.

    Arya, G.S., Negi, N.S.: Effect of In and Mn co-doping on structural, magnetic and dielectric properties of BiFeO3 nanoparticles. J. Phys. D. Appl. Phys. 46, 095004 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    Chen, J., Dai, H.Y., Li, T., et al.: Role of Mn substitution in the multiferroic properties of BiFeO3 ceramics. J. Supercond. Nov. Magn. 28, 2751–2754 (2015)

    Article  Google Scholar 

  29. 29.

    Li, Y., Zhou, S.D., Zhu, L., et al.: Structural transition and its effect on magnetoelectric coupling in the BiFe1–xMnxO3 ceramics prepared by sol-gel method. J. Magn. Magn. Mater. 465, 784–788 (2018)

    ADS  Article  Google Scholar 

  30. 30.

    Tian, C., Yao, Q.R., Tong, Z.F., et al.: Effects of Sm-doping on microstructure, magnetic and microwave absorption properties of BiFeO3. J. Rare Earths. (2020).

  31. 31.

    Huang, Q., Bao, C.Z., Wang, Q.Y., et al.: Tuning the microwave absorption capacity of TiP2O7 by composited with biomass carbon. Appl. Surf. Sci. 515, 145974 (2020)

    Article  Google Scholar 

  32. 32.

    Yang, P.Y., Tian, C., Yao, Q.R.: Effects of Co element on the structure, magnetic, and microwave absorption properties of La-Fe-B alloys. J. Supercond. Nov. Magn. 33, 1125–1128 (2020)

    Article  Google Scholar 

  33. 33.

    Duan, Y.P., Liu, Z., Zhang, Y.H., et al.: A theoretical study of the dielectric and magnetic responses of Fe-doped a-MnO2 based on quantum mechanical calculations. J. Mater. Chem. C. 1, 1990–1994 (2013)

    Article  Google Scholar 

  34. 34.

    He, Y., Pan, S.K., Yu, J.J., et al.: Magnetic, microwave absorbing performance of Al8Mn5 alloy with La dopant. J. Supercond. Nov. Magn. 32, 277–281 (2019)

    Article  Google Scholar 

  35. 35.

    Zhang, X.Q., Zeng, X.H., Dou, J.X., et al.: Multiferroic and magnetoelectric properties of BiFeO3–YCrO3, ceramics at the rhombohedral-orthorhombic phase boundary. Mater. Lett. 141, 168–171 (2015)

    Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundations of China (No. 51871066 and No. 51761007) and Technology Base and Special Talents at Guangxi (No. 2018AD19088).

Author information



Corresponding authors

Correspondence to Qingrong Yao or Jiang Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Tong, Z., Huang, L. et al. Mn Doping of BiFeO3 for Microstructure and Electromagnetic Characteristics. J Supercond Nov Magn (2021).

Download citation


  • Microstructure
  • Element valence
  • Magnetic properties
  • Microwave absorbing property